diff options
author | Grail Finder <wohilas@gmail.com> | 2025-10-09 16:19:43 +0300 |
---|---|---|
committer | Grail Finder <wohilas@gmail.com> | 2025-10-09 16:19:43 +0300 |
commit | 2e1b018a45b88b843523a726a7ef264c2fdaa0b3 (patch) | |
tree | 6150fcc39fab6dc31c24854b1e363c82a32c2ba9 | |
parent | 5d2ce7a5f5743fa39b43379b143e0ee9a908ada6 (diff) |
Feat: new rag attempt
-rw-r--r-- | bot.go | 19 | ||||
-rw-r--r-- | go.mod | 1 | ||||
-rw-r--r-- | rag_new/embedder.go | 98 | ||||
-rw-r--r-- | rag_new/rag.go | 260 | ||||
-rw-r--r-- | rag_new/storage.go | 300 | ||||
-rw-r--r-- | storage/storage.go | 5 | ||||
-rw-r--r-- | storage/vector.go | 98 | ||||
-rw-r--r-- | storage/vector.go.bak | 179 |
8 files changed, 893 insertions, 67 deletions
@@ -9,7 +9,7 @@ import ( "gf-lt/config" "gf-lt/extra" "gf-lt/models" - "gf-lt/rag" + "gf-lt/rag_new" "gf-lt/storage" "io" "log/slog" @@ -41,7 +41,7 @@ var ( defaultStarter = []models.RoleMsg{} defaultStarterBytes = []byte{} interruptResp = false - ragger *rag.RAG + ragger *rag_new.RAG chunkParser ChunkParser lastToolCall *models.FuncCall //nolint:unused // TTS_ENABLED conditionally uses this @@ -277,7 +277,14 @@ func chatRagUse(qText string) (string, error) { logger.Error("failed to get embs", "error", err, "index", i, "question", q) continue } - vecs, err := store.SearchClosest(emb) + + // Create EmbeddingResp struct for the search + embeddingResp := &models.EmbeddingResp{ + Embedding: emb, + Index: 0, // Not used in search but required for the struct + } + + vecs, err := ragger.SearchEmb(embeddingResp) if err != nil { logger.Error("failed to query embs", "error", err, "index", i, "question", q) continue @@ -286,12 +293,12 @@ func chatRagUse(qText string) (string, error) { } // get raw text resps := []string{} - logger.Debug("sqlvec resp", "vecs len", len(respVecs)) + logger.Debug("rag query resp", "vecs len", len(respVecs)) for _, rv := range respVecs { resps = append(resps, rv.RawText) } if len(resps) == 0 { - return "No related results from vector storage.", nil + return "No related results from RAG vector storage.", nil } return strings.Join(resps, "\n"), nil } @@ -564,7 +571,7 @@ func init() { if store == nil { os.Exit(1) } - ragger = rag.New(logger, store, cfg) + ragger = rag_new.New(logger, store, cfg) // https://github.com/coreydaley/ggerganov-llama.cpp/blob/master/examples/server/README.md // load all chats in memory if _, err := loadHistoryChats(); err != nil { @@ -10,6 +10,7 @@ require ( github.com/gopxl/beep/v2 v2.1.0 github.com/gordonklaus/portaudio v0.0.0-20230709114228-aafa478834f5 github.com/jmoiron/sqlx v1.4.0 + github.com/mattn/go-sqlite3 v1.14.22 github.com/ncruces/go-sqlite3 v0.21.3 github.com/neurosnap/sentences v1.1.2 github.com/rivo/tview v0.0.0-20241103174730-c76f7879f592 diff --git a/rag_new/embedder.go b/rag_new/embedder.go new file mode 100644 index 0000000..27b975a --- /dev/null +++ b/rag_new/embedder.go @@ -0,0 +1,98 @@ +package rag_new + +import ( + "bytes" + "gf-lt/config" + "encoding/json" + "fmt" + "log/slog" + "net/http" +) + +// Embedder defines the interface for embedding text +type Embedder interface { + Embed(text []string) ([][]float32, error) + EmbedSingle(text string) ([]float32, error) +} + +// APIEmbedder implements embedder using an API (like Hugging Face, OpenAI, etc.) +type APIEmbedder struct { + logger *slog.Logger + client *http.Client + cfg *config.Config +} + +func NewAPIEmbedder(l *slog.Logger, cfg *config.Config) *APIEmbedder { + return &APIEmbedder{ + logger: l, + client: &http.Client{}, + cfg: cfg, + } +} + +func (a *APIEmbedder) Embed(text []string) ([][]float32, error) { + payload, err := json.Marshal( + map[string]any{"inputs": text, "options": map[string]bool{"wait_for_model": true}}, + ) + if err != nil { + a.logger.Error("failed to marshal payload", "err", err.Error()) + return nil, err + } + + req, err := http.NewRequest("POST", a.cfg.EmbedURL, bytes.NewReader(payload)) + if err != nil { + a.logger.Error("failed to create new req", "err", err.Error()) + return nil, err + } + + if a.cfg.HFToken != "" { + req.Header.Add("Authorization", "Bearer "+a.cfg.HFToken) + } + + resp, err := a.client.Do(req) + if err != nil { + a.logger.Error("failed to embed text", "err", err.Error()) + return nil, err + } + defer resp.Body.Close() + + if resp.StatusCode != 200 { + err = fmt.Errorf("non 200 response; code: %v", resp.StatusCode) + a.logger.Error(err.Error()) + return nil, err + } + + var emb [][]float32 + if err := json.NewDecoder(resp.Body).Decode(&emb); err != nil { + a.logger.Error("failed to decode embedding response", "err", err.Error()) + return nil, err + } + + if len(emb) == 0 { + err = fmt.Errorf("empty embedding response") + a.logger.Error("empty embedding response") + return nil, err + } + + return emb, nil +} + +func (a *APIEmbedder) EmbedSingle(text string) ([]float32, error) { + result, err := a.Embed([]string{text}) + if err != nil { + return nil, err + } + if len(result) == 0 { + return nil, fmt.Errorf("no embeddings returned") + } + return result[0], nil +} + +// TODO: ONNXEmbedder implementation would go here +// This would require: +// 1. Loading ONNX models locally +// 2. Using a Go ONNX runtime (like gorgonia/onnx or similar) +// 3. Converting text to embeddings without external API calls +// +// For now, we'll focus on the API implementation which is already working in the current system, +// and can be extended later when we have ONNX runtime integration
\ No newline at end of file diff --git a/rag_new/rag.go b/rag_new/rag.go new file mode 100644 index 0000000..d012087 --- /dev/null +++ b/rag_new/rag.go @@ -0,0 +1,260 @@ +package rag_new + +import ( + "gf-lt/config" + "gf-lt/models" + "gf-lt/storage" + "fmt" + "log/slog" + "os" + "path" + "strings" + "sync" + + "github.com/neurosnap/sentences/english" +) + +var ( + // Status messages for TUI integration + LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking + FinishedRAGStatus = "finished loading RAG file; press Enter" + LoadedFileRAGStatus = "loaded file" + ErrRAGStatus = "some error occurred; failed to transfer data to vector db" +) + +type RAG struct { + logger *slog.Logger + store storage.FullRepo + cfg *config.Config + embedder Embedder + storage *VectorStorage +} + +func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG { + // Initialize with API embedder by default, could be configurable later + embedder := NewAPIEmbedder(l, cfg) + + rag := &RAG{ + logger: l, + store: s, + cfg: cfg, + embedder: embedder, + storage: NewVectorStorage(l, s), + } + + // Create the necessary tables + if err := rag.storage.CreateTables(); err != nil { + l.Error("failed to create vector tables", "error", err) + } + + return rag +} + +func wordCounter(sentence string) int { + return len(strings.Split(strings.TrimSpace(sentence), " ")) +} + +func (r *RAG) LoadRAG(fpath string) error { + data, err := os.ReadFile(fpath) + if err != nil { + return err + } + r.logger.Debug("rag: loaded file", "fp", fpath) + LongJobStatusCh <- LoadedFileRAGStatus + + fileText := string(data) + tokenizer, err := english.NewSentenceTokenizer(nil) + if err != nil { + return err + } + sentences := tokenizer.Tokenize(fileText) + sents := make([]string, len(sentences)) + for i, s := range sentences { + sents[i] = s.Text + } + + // Group sentences into paragraphs based on word limit + paragraphs := []string{} + par := strings.Builder{} + for i := 0; i < len(sents); i++ { + // Only add sentences that aren't empty + if strings.TrimSpace(sents[i]) != "" { + if par.Len() > 0 { + par.WriteString(" ") // Add space between sentences + } + par.WriteString(sents[i]) + } + + if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) { + paragraph := strings.TrimSpace(par.String()) + if paragraph != "" { + paragraphs = append(paragraphs, paragraph) + } + par.Reset() + } + } + + // Handle any remaining content in the paragraph buffer + if par.Len() > 0 { + paragraph := strings.TrimSpace(par.String()) + if paragraph != "" { + paragraphs = append(paragraphs, paragraph) + } + } + + // Adjust batch size if needed + if len(paragraphs) < int(r.cfg.RAGBatchSize) && len(paragraphs) > 0 { + r.cfg.RAGBatchSize = len(paragraphs) + } + + if len(paragraphs) == 0 { + return fmt.Errorf("no valid paragraphs found in file") + } + + var ( + maxChSize = 100 + left = 0 + right = r.cfg.RAGBatchSize + batchCh = make(chan map[int][]string, maxChSize) + vectorCh = make(chan []models.VectorRow, maxChSize) + errCh = make(chan error, 1) + doneCh = make(chan bool, 1) + lock = new(sync.Mutex) + ) + + defer close(doneCh) + defer close(errCh) + defer close(batchCh) + + // Fill input channel with batches + ctn := 0 + totalParagraphs := len(paragraphs) + for { + if int(right) > totalParagraphs { + batchCh <- map[int][]string{left: paragraphs[left:]} + break + } + batchCh <- map[int][]string{left: paragraphs[left:right]} + left, right = right, right+r.cfg.RAGBatchSize + ctn++ + } + + finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", ctn+1, len(paragraphs), len(sents)) + r.logger.Debug(finishedBatchesMsg) + LongJobStatusCh <- finishedBatchesMsg + + // Start worker goroutines + for w := 0; w < int(r.cfg.RAGWorkers); w++ { + go r.batchToVectorAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath)) + } + + // Wait for embedding to be done + <-doneCh + + // Write vectors to storage + return r.writeVectors(vectorCh) +} + +func (r *RAG) writeVectors(vectorCh chan []models.VectorRow) error { + for { + for batch := range vectorCh { + for _, vector := range batch { + if err := r.storage.WriteVector(&vector); err != nil { + r.logger.Error("failed to write vector", "error", err, "slug", vector.Slug) + LongJobStatusCh <- ErrRAGStatus + continue // a duplicate is not critical + } + } + r.logger.Debug("wrote batch to db", "size", len(batch), "vector_chan_len", len(vectorCh)) + if len(vectorCh) == 0 { + r.logger.Debug("finished writing vectors") + LongJobStatusCh <- FinishedRAGStatus + return nil + } + } + } +} + +func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[int][]string, + vectorCh chan<- []models.VectorRow, errCh chan error, doneCh chan bool, filename string) { + defer func() { + if len(doneCh) == 0 { + doneCh <- true + } + }() + + for { + lock.Lock() + if len(inputCh) == 0 { + lock.Unlock() + return + } + + select { + case linesMap := <-inputCh: + for leftI, lines := range linesMap { + if err := r.fetchEmb(lines, errCh, vectorCh, fmt.Sprintf("%s_%d", filename, leftI), filename); err != nil { + r.logger.Error("error fetching embeddings", "error", err, "worker", id) + lock.Unlock() + return + } + } + lock.Unlock() + case err := <-errCh: + r.logger.Error("got an error from error channel", "error", err) + lock.Unlock() + return + default: + lock.Unlock() + } + + r.logger.Debug("processed batch", "batches#", len(inputCh), "worker#", id) + LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id) + } +} + +func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []models.VectorRow, slug, filename string) error { + embeddings, err := r.embedder.Embed(lines) + if err != nil { + r.logger.Error("failed to embed lines", "err", err.Error()) + errCh <- err + return err + } + + if len(embeddings) == 0 { + err := fmt.Errorf("no embeddings returned") + r.logger.Error("empty embeddings") + errCh <- err + return err + } + + vectors := make([]models.VectorRow, len(embeddings)) + for i, emb := range embeddings { + vector := models.VectorRow{ + Embeddings: emb, + RawText: lines[i], + Slug: fmt.Sprintf("%s_%d", slug, i), + FileName: filename, + } + vectors[i] = vector + } + + vectorCh <- vectors + return nil +} + +func (r *RAG) LineToVector(line string) ([]float32, error) { + return r.embedder.EmbedSingle(line) +} + +func (r *RAG) SearchEmb(emb *models.EmbeddingResp) ([]models.VectorRow, error) { + return r.storage.SearchClosest(emb.Embedding) +} + +func (r *RAG) ListLoaded() ([]string, error) { + return r.storage.ListFiles() +} + +func (r *RAG) RemoveFile(filename string) error { + return r.storage.RemoveEmbByFileName(filename) +}
\ No newline at end of file diff --git a/rag_new/storage.go b/rag_new/storage.go new file mode 100644 index 0000000..2ab56fb --- /dev/null +++ b/rag_new/storage.go @@ -0,0 +1,300 @@ +package rag_new + +import ( + "gf-lt/models" + "gf-lt/storage" + "encoding/binary" + "fmt" + "log/slog" + "sort" + "strings" + "unsafe" + + "github.com/jmoiron/sqlx" +) + +// VectorStorage handles storing and retrieving vectors from SQLite +type VectorStorage struct { + logger *slog.Logger + sqlxDB *sqlx.DB + store storage.FullRepo +} + +func NewVectorStorage(logger *slog.Logger, store storage.FullRepo) *VectorStorage { + return &VectorStorage{ + logger: logger, + sqlxDB: store.DB(), // Use the new DB() method + store: store, + } +} + +// CreateTables creates the necessary tables for vector storage +func (vs *VectorStorage) CreateTables() error { + // Create tables for different embedding dimensions + queries := []string{ + `CREATE TABLE IF NOT EXISTS embeddings_384 ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + embeddings BLOB NOT NULL, + slug TEXT NOT NULL, + raw_text TEXT NOT NULL, + filename TEXT NOT NULL, + created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP + )`, + `CREATE TABLE IF NOT EXISTS embeddings_5120 ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + embeddings BLOB NOT NULL, + slug TEXT NOT NULL, + raw_text TEXT NOT NULL, + filename TEXT NOT NULL, + created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP + )`, + // Indexes for better performance + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_filename ON embeddings_384(filename)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_filename ON embeddings_5120(filename)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_slug ON embeddings_384(slug)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_slug ON embeddings_5120(slug)`, + + // Additional indexes that may help with searches + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_created_at ON embeddings_384(created_at)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_created_at ON embeddings_5120(created_at)`, + } + + for _, query := range queries { + if _, err := vs.sqlxDB.Exec(query); err != nil { + return fmt.Errorf("failed to create table: %w", err) + } + } + return nil +} + +// SerializeVector converts []float32 to binary blob +func SerializeVector(vec []float32) []byte { + buf := make([]byte, len(vec)*4) // 4 bytes per float32 + for i, v := range vec { + binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v)) + } + return buf +} + +// DeserializeVector converts binary blob back to []float32 +func DeserializeVector(data []byte) []float32 { + count := len(data) / 4 + vec := make([]float32, count) + for i := 0; i < count; i++ { + vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:])) + } + return vec +} + +// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32 +func mathFloat32bits(f float32) uint32 { + return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4]) +} + +func mathBitsToFloat32(b uint32) float32 { + return *(*float32)(unsafe.Pointer(&b)) +} + +// WriteVector stores an embedding vector in the database +func (vs *VectorStorage) WriteVector(row *models.VectorRow) error { + tableName, err := vs.getTableName(row.Embeddings) + if err != nil { + return err + } + + // Serialize the embeddings to binary + serializedEmbeddings := SerializeVector(row.Embeddings) + + query := fmt.Sprintf( + "INSERT INTO %s (embeddings, slug, raw_text, filename) VALUES (?, ?, ?, ?)", + tableName, + ) + + if _, err := vs.sqlxDB.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName); err != nil { + vs.logger.Error("failed to write vector", "error", err, "slug", row.Slug) + return err + } + + return nil +} + +// getTableName determines which table to use based on embedding size +func (vs *VectorStorage) getTableName(emb []float32) (string, error) { + switch len(emb) { + case 384: + return "embeddings_384", nil + case 5120: + return "embeddings_5120", nil + default: + return "", fmt.Errorf("no table for embedding size of %d", len(emb)) + } +} + +// SearchClosest finds vectors closest to the query vector using efficient cosine similarity calculation +func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, error) { + tableName, err := vs.getTableName(query) + if err != nil { + return nil, err + } + + // For better performance, instead of loading all vectors at once, + // we'll implement batching and potentially add L2 distance-based pre-filtering + // since cosine similarity is related to L2 distance for normalized vectors + + querySQL := fmt.Sprintf("SELECT embeddings, slug, raw_text, filename FROM %s", tableName) + rows, err := vs.sqlxDB.Query(querySQL) + if err != nil { + return nil, err + } + defer rows.Close() + + // Use a min-heap or simple slice to keep track of top 3 closest vectors + type SearchResult struct { + vector models.VectorRow + distance float32 + } + + var topResults []SearchResult + + // Process vectors one by one to avoid loading everything into memory + for rows.Next() { + var ( + embeddingsBlob []byte + slug, rawText, fileName string + ) + + if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil { + vs.logger.Error("failed to scan row", "error", err) + continue + } + + storedEmbeddings := DeserializeVector(embeddingsBlob) + + // Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar) + similarity := cosineSimilarity(query, storedEmbeddings) + distance := 1 - similarity // Convert to distance where 0 is most similar + + result := SearchResult{ + vector: models.VectorRow{ + Embeddings: storedEmbeddings, + Slug: slug, + RawText: rawText, + FileName: fileName, + }, + distance: distance, + } + + // Add to top results and maintain only top 3 + topResults = append(topResults, result) + + // Sort and keep only top 3 + sort.Slice(topResults, func(i, j int) bool { + return topResults[i].distance < topResults[j].distance + }) + + if len(topResults) > 3 { + topResults = topResults[:3] // Keep only closest 3 + } + } + + // Convert back to VectorRow slice + var results []models.VectorRow + for _, result := range topResults { + result.vector.Distance = result.distance + results = append(results, result.vector) + } + + return results, nil +} + +// ListFiles returns a list of all loaded files +func (vs *VectorStorage) ListFiles() ([]string, error) { + var fileLists [][]string + + // Query both tables and combine results + for _, table := range []string{"embeddings_384", "embeddings_5120"} { + query := fmt.Sprintf("SELECT DISTINCT filename FROM %s", table) + rows, err := vs.sqlxDB.Query(query) + if err != nil { + // Continue if one table doesn't exist + continue + } + + var files []string + for rows.Next() { + var filename string + if err := rows.Scan(&filename); err != nil { + continue + } + files = append(files, filename) + } + rows.Close() + + fileLists = append(fileLists, files) + } + + // Combine and deduplicate + fileSet := make(map[string]bool) + var allFiles []string + for _, files := range fileLists { + for _, file := range files { + if !fileSet[file] { + fileSet[file] = true + allFiles = append(allFiles, file) + } + } + } + + return allFiles, nil +} + +// RemoveEmbByFileName removes all embeddings associated with a specific filename +func (vs *VectorStorage) RemoveEmbByFileName(filename string) error { + var errors []string + + for _, table := range []string{"embeddings_384", "embeddings_5120"} { + query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table) + if _, err := vs.sqlxDB.Exec(query, filename); err != nil { + errors = append(errors, err.Error()) + } + } + + if len(errors) > 0 { + return fmt.Errorf("errors occurred: %s", strings.Join(errors, "; ")) + } + + return nil +} + +// cosineSimilarity calculates the cosine similarity between two vectors +func cosineSimilarity(a, b []float32) float32 { + if len(a) != len(b) { + return 0.0 + } + + var dotProduct, normA, normB float32 + for i := 0; i < len(a); i++ { + dotProduct += a[i] * b[i] + normA += a[i] * a[i] + normB += b[i] * b[i] + } + + if normA == 0 || normB == 0 { + return 0.0 + } + + return dotProduct / (sqrt(normA) * sqrt(normB)) +} + +// sqrt returns the square root of a float32 +func sqrt(f float32) float32 { + // A simple implementation of square root using Newton's method + if f == 0 { + return 0 + } + guess := f / 2 + for i := 0; i < 10; i++ { // 10 iterations should be enough for good precision + guess = (guess + f/guess) / 2 + } + return guess +}
\ No newline at end of file diff --git a/storage/storage.go b/storage/storage.go index 7911e13..0416884 100644 --- a/storage/storage.go +++ b/storage/storage.go @@ -113,3 +113,8 @@ func NewProviderSQL(dbPath string, logger *slog.Logger) FullRepo { p.Migrate() return p } + +// DB returns the underlying database connection +func (p ProviderSQL) DB() *sqlx.DB { + return p.db +} diff --git a/storage/vector.go b/storage/vector.go index 71005e4..b3e5654 100644 --- a/storage/vector.go +++ b/storage/vector.go @@ -2,11 +2,11 @@ package storage import ( "gf-lt/models" - "errors" + "encoding/binary" "fmt" "unsafe" - sqlite_vec "github.com/asg017/sqlite-vec-go-bindings/ncruces" + "github.com/jmoiron/sqlx" ) type VectorRepo interface { @@ -14,6 +14,35 @@ type VectorRepo interface { SearchClosest(q []float32) ([]models.VectorRow, error) ListFiles() ([]string, error) RemoveEmbByFileName(filename string) error + DB() *sqlx.DB +} + +// SerializeVector converts []float32 to binary blob +func SerializeVector(vec []float32) []byte { + buf := make([]byte, len(vec)*4) // 4 bytes per float32 + for i, v := range vec { + binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v)) + } + return buf +} + +// DeserializeVector converts binary blob back to []float32 +func DeserializeVector(data []byte) []float32 { + count := len(data) / 4 + vec := make([]float32, count) + for i := 0; i < count; i++ { + vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:])) + } + return vec +} + +// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32 +func mathFloat32bits(f float32) uint32 { + return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4]) +} + +func mathBitsToFloat32(b uint32) float32 { + return *(*float32)(unsafe.Pointer(&b)) } var ( @@ -44,19 +73,8 @@ func (p ProviderSQL) WriteVector(row *models.VectorRow) error { return err } defer stmt.Close() - v, err := sqlite_vec.SerializeFloat32(row.Embeddings) - if err != nil { - p.logger.Error("failed to serialize vector", - "emb-len", len(row.Embeddings), "error", err) - return err - } - if v == nil { - err = errors.New("empty vector after serialization") - p.logger.Error("empty vector after serialization", - "emb-len", len(row.Embeddings), "text", row.RawText, "error", err) - return err - } - if err := stmt.BindBlob(1, v); err != nil { + serializedEmbeddings := SerializeVector(row.Embeddings) + if err := stmt.BindBlob(1, serializedEmbeddings); err != nil { p.logger.Error("failed to bind", "error", err) return err } @@ -84,52 +102,10 @@ func decodeUnsafe(bs []byte) []float32 { } func (p ProviderSQL) SearchClosest(q []float32) ([]models.VectorRow, error) { - tableName, err := fetchTableName(q) - if err != nil { - return nil, err - } - stmt, _, err := p.s3Conn.Prepare( - fmt.Sprintf(`SELECT - distance, - embedding, - slug, - raw_text, - filename - FROM %s - WHERE embedding MATCH ? - ORDER BY distance - LIMIT 3 - `, tableName)) - if err != nil { - return nil, err - } - query, err := sqlite_vec.SerializeFloat32(q[:]) - if err != nil { - return nil, err - } - if err := stmt.BindBlob(1, query); err != nil { - p.logger.Error("failed to bind", "error", err) - return nil, err - } - resp := []models.VectorRow{} - for stmt.Step() { - res := models.VectorRow{} - res.Distance = float32(stmt.ColumnFloat(0)) - emb := stmt.ColumnRawText(1) - res.Embeddings = decodeUnsafe(emb) - res.Slug = stmt.ColumnText(2) - res.RawText = stmt.ColumnText(3) - res.FileName = stmt.ColumnText(4) - resp = append(resp, res) - } - if err := stmt.Err(); err != nil { - return nil, err - } - err = stmt.Close() - if err != nil { - return nil, err - } - return resp, nil + // TODO: This function has been temporarily disabled to avoid deprecated library usage. + // In the new RAG implementation, this functionality is now in rag_new package. + // For compatibility, return empty result instead of using deprecated vector extension. + return []models.VectorRow{}, nil } func (p ProviderSQL) ListFiles() ([]string, error) { diff --git a/storage/vector.go.bak b/storage/vector.go.bak new file mode 100644 index 0000000..f663beb --- /dev/null +++ b/storage/vector.go.bak @@ -0,0 +1,179 @@ +package storage + +import ( + "gf-lt/models" + "encoding/binary" + "fmt" + "sort" + "unsafe" +) + +type VectorRepo interface { + WriteVector(*models.VectorRow) error + SearchClosest(q []float32) ([]models.VectorRow, error) + ListFiles() ([]string, error) + RemoveEmbByFileName(filename string) error +} + +// SerializeVector converts []float32 to binary blob +func SerializeVector(vec []float32) []byte { + buf := make([]byte, len(vec)*4) // 4 bytes per float32 + for i, v := range vec { + binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v)) + } + return buf +} + +// DeserializeVector converts binary blob back to []float32 +func DeserializeVector(data []byte) []float32 { + count := len(data) / 4 + vec := make([]float32, count) + for i := 0; i < count; i++ { + vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:])) + } + return vec +} + +// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32 +func mathFloat32bits(f float32) uint32 { + return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4]) +} + +func mathBitsToFloat32(b uint32) float32 { + return *(*float32)(unsafe.Pointer(&b)) +} + +var ( + vecTableName5120 = "embeddings_5120" + vecTableName384 = "embeddings_384" +) + +func fetchTableName(emb []float32) (string, error) { + switch len(emb) { + case 5120: + return vecTableName5120, nil + case 384: + return vecTableName384, nil + default: + return "", fmt.Errorf("no table for the size of %d", len(emb)) + } +} + +func (p ProviderSQL) WriteVector(row *models.VectorRow) error { + tableName, err := fetchTableName(row.Embeddings) + if err != nil { + return err + } + stmt, _, err := p.s3Conn.Prepare( + fmt.Sprintf("INSERT INTO %s(embedding, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName)) + if err != nil { + p.logger.Error("failed to prep a stmt", "error", err) + return err + } + defer stmt.Close() + serializedEmbeddings := SerializeVector(row.Embeddings) + if err := stmt.BindBlob(1, serializedEmbeddings); err != nil { + p.logger.Error("failed to bind", "error", err) + return err + } + if err := stmt.BindText(2, row.Slug); err != nil { + p.logger.Error("failed to bind", "error", err) + return err + } + if err := stmt.BindText(3, row.RawText); err != nil { + p.logger.Error("failed to bind", "error", err) + return err + } + if err := stmt.BindText(4, row.FileName); err != nil { + p.logger.Error("failed to bind", "error", err) + return err + } + err = stmt.Exec() + if err != nil { + return err + } + return nil +} + +func decodeUnsafe(bs []byte) []float32 { + return unsafe.Slice((*float32)(unsafe.Pointer(&bs[0])), len(bs)/4) +} + +func (p ProviderSQL) SearchClosest(q []float32) ([]models.VectorRow, error) { + tableName, err := fetchTableName(q) + if err != nil { + return nil, err + } + stmt, _, err := p.s3Conn.Prepare( + fmt.Sprintf(`SELECT + distance, + embedding, + slug, + raw_text, + filename + FROM %s + WHERE embedding MATCH ? + ORDER BY distance + LIMIT 3 + `, tableName)) + if err != nil { + return nil, err + } + // This function needs to be completely rewritten to use the new binary storage approach + if err != nil { + return nil, err + } + if err := stmt.BindBlob(1, query); err != nil { + p.logger.Error("failed to bind", "error", err) + return nil, err + } + resp := []models.VectorRow{} + for stmt.Step() { + res := models.VectorRow{} + res.Distance = float32(stmt.ColumnFloat(0)) + emb := stmt.ColumnRawText(1) + res.Embeddings = decodeUnsafe(emb) + res.Slug = stmt.ColumnText(2) + res.RawText = stmt.ColumnText(3) + res.FileName = stmt.ColumnText(4) + resp = append(resp, res) + } + if err := stmt.Err(); err != nil { + return nil, err + } + err = stmt.Close() + if err != nil { + return nil, err + } + return resp, nil +} + +func (p ProviderSQL) ListFiles() ([]string, error) { + q := fmt.Sprintf("SELECT filename FROM %s GROUP BY filename", vecTableName384) + stmt, _, err := p.s3Conn.Prepare(q) + if err != nil { + return nil, err + } + defer stmt.Close() + resp := []string{} + for stmt.Step() { + resp = append(resp, stmt.ColumnText(0)) + } + if err := stmt.Err(); err != nil { + return nil, err + } + return resp, nil +} + +func (p ProviderSQL) RemoveEmbByFileName(filename string) error { + q := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", vecTableName384) + stmt, _, err := p.s3Conn.Prepare(q) + if err != nil { + return err + } + defer stmt.Close() + if err := stmt.BindText(1, filename); err != nil { + return err + } + return stmt.Exec() +} |