summaryrefslogtreecommitdiff
path: root/rag_new/rag.go
blob: d0120878bca73d7e670e99fd8ba2fd308695aea3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
package rag_new

import (
	"gf-lt/config"
	"gf-lt/models"
	"gf-lt/storage"
	"fmt"
	"log/slog"
	"os"
	"path"
	"strings"
	"sync"

	"github.com/neurosnap/sentences/english"
)

var (
	// Status messages for TUI integration
	LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking
	FinishedRAGStatus   = "finished loading RAG file; press Enter"
	LoadedFileRAGStatus = "loaded file"
	ErrRAGStatus        = "some error occurred; failed to transfer data to vector db"
)

type RAG struct {
	logger *slog.Logger
	store  storage.FullRepo
	cfg    *config.Config
	embedder Embedder
	storage *VectorStorage
}

func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG {
	// Initialize with API embedder by default, could be configurable later
	embedder := NewAPIEmbedder(l, cfg)
	
	rag := &RAG{
		logger: l,
		store:  s,
		cfg:    cfg,
		embedder: embedder,
		storage: NewVectorStorage(l, s),
	}
	
	// Create the necessary tables
	if err := rag.storage.CreateTables(); err != nil {
		l.Error("failed to create vector tables", "error", err)
	}
	
	return rag
}

func wordCounter(sentence string) int {
	return len(strings.Split(strings.TrimSpace(sentence), " "))
}

func (r *RAG) LoadRAG(fpath string) error {
	data, err := os.ReadFile(fpath)
	if err != nil {
		return err
	}
	r.logger.Debug("rag: loaded file", "fp", fpath)
	LongJobStatusCh <- LoadedFileRAGStatus
	
	fileText := string(data)
	tokenizer, err := english.NewSentenceTokenizer(nil)
	if err != nil {
		return err
	}
	sentences := tokenizer.Tokenize(fileText)
	sents := make([]string, len(sentences))
	for i, s := range sentences {
		sents[i] = s.Text
	}
	
	// Group sentences into paragraphs based on word limit
	paragraphs := []string{}
	par := strings.Builder{}
	for i := 0; i < len(sents); i++ {
		// Only add sentences that aren't empty
		if strings.TrimSpace(sents[i]) != "" {
			if par.Len() > 0 {
				par.WriteString(" ") // Add space between sentences
			}
			par.WriteString(sents[i])
		}
		
		if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) {
			paragraph := strings.TrimSpace(par.String())
			if paragraph != "" {
				paragraphs = append(paragraphs, paragraph)
			}
			par.Reset()
		}
	}
	
	// Handle any remaining content in the paragraph buffer
	if par.Len() > 0 {
		paragraph := strings.TrimSpace(par.String())
		if paragraph != "" {
			paragraphs = append(paragraphs, paragraph)
		}
	}
	
	// Adjust batch size if needed
	if len(paragraphs) < int(r.cfg.RAGBatchSize) && len(paragraphs) > 0 {
		r.cfg.RAGBatchSize = len(paragraphs)
	}
	
	if len(paragraphs) == 0 {
		return fmt.Errorf("no valid paragraphs found in file")
	}
	
	var (
		maxChSize = 100
		left      = 0
		right     = r.cfg.RAGBatchSize
		batchCh   = make(chan map[int][]string, maxChSize)
		vectorCh  = make(chan []models.VectorRow, maxChSize)
		errCh     = make(chan error, 1)
		doneCh    = make(chan bool, 1)
		lock      = new(sync.Mutex)
	)
	
	defer close(doneCh)
	defer close(errCh)
	defer close(batchCh)
	
	// Fill input channel with batches
	ctn := 0
	totalParagraphs := len(paragraphs)
	for {
		if int(right) > totalParagraphs {
			batchCh <- map[int][]string{left: paragraphs[left:]}
			break
		}
		batchCh <- map[int][]string{left: paragraphs[left:right]}
		left, right = right, right+r.cfg.RAGBatchSize
		ctn++
	}
	
	finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", ctn+1, len(paragraphs), len(sents))
	r.logger.Debug(finishedBatchesMsg)
	LongJobStatusCh <- finishedBatchesMsg
	
	// Start worker goroutines
	for w := 0; w < int(r.cfg.RAGWorkers); w++ {
		go r.batchToVectorAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath))
	}
	
	// Wait for embedding to be done
	<-doneCh
	
	// Write vectors to storage
	return r.writeVectors(vectorCh)
}

func (r *RAG) writeVectors(vectorCh chan []models.VectorRow) error {
	for {
		for batch := range vectorCh {
			for _, vector := range batch {
				if err := r.storage.WriteVector(&vector); err != nil {
					r.logger.Error("failed to write vector", "error", err, "slug", vector.Slug)
					LongJobStatusCh <- ErrRAGStatus
					continue // a duplicate is not critical
				}
			}
			r.logger.Debug("wrote batch to db", "size", len(batch), "vector_chan_len", len(vectorCh))
			if len(vectorCh) == 0 {
				r.logger.Debug("finished writing vectors")
				LongJobStatusCh <- FinishedRAGStatus
				return nil
			}
		}
	}
}

func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[int][]string,
	vectorCh chan<- []models.VectorRow, errCh chan error, doneCh chan bool, filename string) {
	defer func() {
		if len(doneCh) == 0 {
			doneCh <- true
		}
	}()
	
	for {
		lock.Lock()
		if len(inputCh) == 0 {
			lock.Unlock()
			return
		}
		
		select {
		case linesMap := <-inputCh:
			for leftI, lines := range linesMap {
				if err := r.fetchEmb(lines, errCh, vectorCh, fmt.Sprintf("%s_%d", filename, leftI), filename); err != nil {
					r.logger.Error("error fetching embeddings", "error", err, "worker", id)
					lock.Unlock()
					return
				}
			}
			lock.Unlock()
		case err := <-errCh:
			r.logger.Error("got an error from error channel", "error", err)
			lock.Unlock()
			return
		default:
			lock.Unlock()
		}
		
		r.logger.Debug("processed batch", "batches#", len(inputCh), "worker#", id)
		LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id)
	}
}

func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []models.VectorRow, slug, filename string) error {
	embeddings, err := r.embedder.Embed(lines)
	if err != nil {
		r.logger.Error("failed to embed lines", "err", err.Error())
		errCh <- err
		return err
	}
	
	if len(embeddings) == 0 {
		err := fmt.Errorf("no embeddings returned")
		r.logger.Error("empty embeddings")
		errCh <- err
		return err
	}
	
	vectors := make([]models.VectorRow, len(embeddings))
	for i, emb := range embeddings {
		vector := models.VectorRow{
			Embeddings: emb,
			RawText:    lines[i],
			Slug:       fmt.Sprintf("%s_%d", slug, i),
			FileName:   filename,
		}
		vectors[i] = vector
	}
	
	vectorCh <- vectors
	return nil
}

func (r *RAG) LineToVector(line string) ([]float32, error) {
	return r.embedder.EmbedSingle(line)
}

func (r *RAG) SearchEmb(emb *models.EmbeddingResp) ([]models.VectorRow, error) {
	return r.storage.SearchClosest(emb.Embedding)
}

func (r *RAG) ListLoaded() ([]string, error) {
	return r.storage.ListFiles()
}

func (r *RAG) RemoveFile(filename string) error {
	return r.storage.RemoveEmbByFileName(filename)
}