summaryrefslogtreecommitdiff
path: root/rag/storage.go
blob: 782c5046c42750bd866054713298b5da7766b1d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package rag

import (
	"encoding/binary"
	"fmt"
	"gf-lt/models"
	"gf-lt/storage"
	"log/slog"
	"sort"
	"strings"
	"unsafe"

	"github.com/jmoiron/sqlx"
)

// VectorStorage handles storing and retrieving vectors from SQLite
type VectorStorage struct {
	logger *slog.Logger
	sqlxDB *sqlx.DB
	store  storage.FullRepo
}

func NewVectorStorage(logger *slog.Logger, store storage.FullRepo) *VectorStorage {
	return &VectorStorage{
		logger: logger,
		sqlxDB: store.DB(), // Use the new DB() method
		store:  store,
	}
}


// SerializeVector converts []float32 to binary blob
func SerializeVector(vec []float32) []byte {
	buf := make([]byte, len(vec)*4) // 4 bytes per float32
	for i, v := range vec {
		binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v))
	}
	return buf
}

// DeserializeVector converts binary blob back to []float32
func DeserializeVector(data []byte) []float32 {
	count := len(data) / 4
	vec := make([]float32, count)
	for i := 0; i < count; i++ {
		vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:]))
	}
	return vec
}

// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32
func mathFloat32bits(f float32) uint32 {
	return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4])
}

func mathBitsToFloat32(b uint32) float32 {
	return *(*float32)(unsafe.Pointer(&b))
}

// WriteVector stores an embedding vector in the database
func (vs *VectorStorage) WriteVector(row *models.VectorRow) error {
	tableName, err := vs.getTableName(row.Embeddings)
	if err != nil {
		return err
	}

	// Serialize the embeddings to binary
	serializedEmbeddings := SerializeVector(row.Embeddings)

	query := fmt.Sprintf(
		"INSERT INTO %s (embeddings, slug, raw_text, filename) VALUES (?, ?, ?, ?)",
		tableName,
	)

	if _, err := vs.sqlxDB.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName); err != nil {
		vs.logger.Error("failed to write vector", "error", err, "slug", row.Slug)
		return err
	}

	return nil
}

// getTableName determines which table to use based on embedding size
func (vs *VectorStorage) getTableName(emb []float32) (string, error) {
	size := len(emb)

	// Check if we support this embedding size
	supportedSizes := map[int]bool{
		384:   true,
		768:   true,
		1024:  true,
		1536:  true,
		2048:  true,
		3072:  true,
		4096:  true,
		5120:  true,
	}

	if supportedSizes[size] {
		return fmt.Sprintf("embeddings_%d", size), nil
	}

	return "", fmt.Errorf("no table for embedding size of %d", size)
}

// SearchClosest finds vectors closest to the query vector using efficient cosine similarity calculation
func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, error) {
	tableName, err := vs.getTableName(query)
	if err != nil {
		return nil, err
	}

	// For better performance, instead of loading all vectors at once,
	// we'll implement batching and potentially add L2 distance-based pre-filtering
	// since cosine similarity is related to L2 distance for normalized vectors

	querySQL := "SELECT embeddings, slug, raw_text, filename FROM " + tableName
	rows, err := vs.sqlxDB.Query(querySQL)
	if err != nil {
		return nil, err
	}
	defer rows.Close()

	// Use a min-heap or simple slice to keep track of top 3 closest vectors
	type SearchResult struct {
		vector   models.VectorRow
		distance float32
	}

	var topResults []SearchResult

	// Process vectors one by one to avoid loading everything into memory
	for rows.Next() {
		var (
			embeddingsBlob          []byte
			slug, rawText, fileName string
		)

		if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil {
			vs.logger.Error("failed to scan row", "error", err)
			continue
		}

		storedEmbeddings := DeserializeVector(embeddingsBlob)

		// Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar)
		similarity := cosineSimilarity(query, storedEmbeddings)
		distance := 1 - similarity // Convert to distance where 0 is most similar

		result := SearchResult{
			vector: models.VectorRow{
				Embeddings: storedEmbeddings,
				Slug:       slug,
				RawText:    rawText,
				FileName:   fileName,
			},
			distance: distance,
		}

		// Add to top results and maintain only top 3
		topResults = append(topResults, result)

		// Sort and keep only top 3
		sort.Slice(topResults, func(i, j int) bool {
			return topResults[i].distance < topResults[j].distance
		})

		if len(topResults) > 3 {
			topResults = topResults[:3] // Keep only closest 3
		}
	}

	// Convert back to VectorRow slice
	results := make([]models.VectorRow, 0, len(topResults))
	for _, result := range topResults {
		result.vector.Distance = result.distance
		results = append(results, result.vector)
	}

	return results, nil
}

// ListFiles returns a list of all loaded files
func (vs *VectorStorage) ListFiles() ([]string, error) {
	fileLists := make([][]string, 0)

	// Query all supported tables and combine results
	embeddingSizes := []int{384, 768, 1024, 1536, 2048, 3072, 4096, 5120}
	for _, size := range embeddingSizes {
		table := fmt.Sprintf("embeddings_%d", size)
		query := "SELECT DISTINCT filename FROM " + table
		rows, err := vs.sqlxDB.Query(query)
		if err != nil {
			// Continue if one table doesn't exist
			continue
		}

		var files []string
		for rows.Next() {
			var filename string
			if err := rows.Scan(&filename); err != nil {
				continue
			}
			files = append(files, filename)
		}
		rows.Close()

		fileLists = append(fileLists, files)
	}

	// Combine and deduplicate
	fileSet := make(map[string]bool)
	var allFiles []string
	for _, files := range fileLists {
		for _, file := range files {
			if !fileSet[file] {
				fileSet[file] = true
				allFiles = append(allFiles, file)
			}
		}
	}

	return allFiles, nil
}

// RemoveEmbByFileName removes all embeddings associated with a specific filename
func (vs *VectorStorage) RemoveEmbByFileName(filename string) error {
	var errors []string

	embeddingSizes := []int{384, 768, 1024, 1536, 2048, 3072, 4096, 5120}
	for _, size := range embeddingSizes {
		table := fmt.Sprintf("embeddings_%d", size)
		query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table)
		if _, err := vs.sqlxDB.Exec(query, filename); err != nil {
			errors = append(errors, err.Error())
		}
	}

	if len(errors) > 0 {
		return fmt.Errorf("errors occurred: %s", strings.Join(errors, "; "))
	}

	return nil
}

// cosineSimilarity calculates the cosine similarity between two vectors
func cosineSimilarity(a, b []float32) float32 {
	if len(a) != len(b) {
		return 0.0
	}

	var dotProduct, normA, normB float32
	for i := 0; i < len(a); i++ {
		dotProduct += a[i] * b[i]
		normA += a[i] * a[i]
		normB += b[i] * b[i]
	}

	if normA == 0 || normB == 0 {
		return 0.0
	}

	return dotProduct / (sqrt(normA) * sqrt(normB))
}

// sqrt returns the square root of a float32
func sqrt(f float32) float32 {
	// A simple implementation of square root using Newton's method
	if f == 0 {
		return 0
	}
	guess := f / 2
	for i := 0; i < 10; i++ { // 10 iterations should be enough for good precision
		guess = (guess + f/guess) / 2
	}
	return guess
}