1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
package main
import (
"bytes"
"gf-lt/models"
"encoding/json"
"io"
"strings"
)
type ChunkParser interface {
ParseChunk([]byte) (string, bool, error)
FormMsg(msg, role string, cont bool) (io.Reader, error)
}
func choseChunkParser() {
chunkParser = LlamaCPPeer{}
switch cfg.CurrentAPI {
case "http://localhost:8080/completion":
chunkParser = LlamaCPPeer{}
logger.Debug("chosen llamacppeer", "link", cfg.CurrentAPI)
return
case "http://localhost:8080/v1/chat/completions":
chunkParser = OpenAIer{}
logger.Debug("chosen openair", "link", cfg.CurrentAPI)
return
case "https://api.deepseek.com/beta/completions":
chunkParser = DeepSeekerCompletion{}
logger.Debug("chosen deepseekercompletio", "link", cfg.CurrentAPI)
return
case "https://api.deepseek.com/chat/completions":
chunkParser = DeepSeekerChat{}
logger.Debug("chosen deepseekerchat", "link", cfg.CurrentAPI)
return
default:
chunkParser = LlamaCPPeer{}
}
// if strings.Contains(cfg.CurrentAPI, "chat") {
// logger.Debug("chosen chat parser")
// chunkParser = OpenAIer{}
// return
// }
// logger.Debug("chosen llamacpp /completion parser")
}
type LlamaCPPeer struct {
}
type OpenAIer struct {
}
type DeepSeekerCompletion struct {
}
type DeepSeekerChat struct {
}
func (lcp LlamaCPPeer) FormMsg(msg, role string, resume bool) (io.Reader, error) {
logger.Debug("formmsg llamacppeer", "link", cfg.CurrentAPI)
if msg != "" { // otherwise let the bot to continue
newMsg := models.RoleMsg{Role: role, Content: msg}
chatBody.Messages = append(chatBody.Messages, newMsg)
// if rag
if cfg.RAGEnabled {
ragResp, err := chatRagUse(newMsg.Content)
if err != nil {
logger.Error("failed to form a rag msg", "error", err)
return nil, err
}
ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
chatBody.Messages = append(chatBody.Messages, ragMsg)
}
}
if cfg.ToolUse && !resume {
// add to chat body
chatBody.Messages = append(chatBody.Messages, models.RoleMsg{Role: cfg.ToolRole, Content: toolSysMsg})
}
messages := make([]string, len(chatBody.Messages))
for i, m := range chatBody.Messages {
messages[i] = m.ToPrompt()
}
prompt := strings.Join(messages, "\n")
// strings builder?
if !resume {
botMsgStart := "\n" + cfg.AssistantRole + ":\n"
prompt += botMsgStart
}
if cfg.ThinkUse && !cfg.ToolUse {
prompt += "<think>"
}
logger.Debug("checking prompt for /completion", "tool_use", cfg.ToolUse,
"msg", msg, "resume", resume, "prompt", prompt)
var payload any
payload = models.NewLCPReq(prompt, cfg, defaultLCPProps)
if strings.Contains(chatBody.Model, "deepseek") {
payload = models.NewDSCompletionReq(prompt, chatBody.Model,
defaultLCPProps["temp"], cfg)
}
data, err := json.Marshal(payload)
if err != nil {
logger.Error("failed to form a msg", "error", err)
return nil, err
}
return bytes.NewReader(data), nil
}
func (lcp LlamaCPPeer) ParseChunk(data []byte) (string, bool, error) {
llmchunk := models.LlamaCPPResp{}
if err := json.Unmarshal(data, &llmchunk); err != nil {
logger.Error("failed to decode", "error", err, "line", string(data))
return "", false, err
}
if llmchunk.Stop {
if llmchunk.Content != "" {
logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
}
return llmchunk.Content, true, nil
}
return llmchunk.Content, false, nil
}
func (op OpenAIer) ParseChunk(data []byte) (string, bool, error) {
llmchunk := models.LLMRespChunk{}
if err := json.Unmarshal(data, &llmchunk); err != nil {
logger.Error("failed to decode", "error", err, "line", string(data))
return "", false, err
}
content := llmchunk.Choices[len(llmchunk.Choices)-1].Delta.Content
if llmchunk.Choices[len(llmchunk.Choices)-1].FinishReason == "stop" {
if content != "" {
logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
}
return content, true, nil
}
return content, false, nil
}
func (op OpenAIer) FormMsg(msg, role string, resume bool) (io.Reader, error) {
logger.Debug("formmsg openaier", "link", cfg.CurrentAPI)
if cfg.ToolUse && !resume {
// prompt += "\n" + cfg.ToolRole + ":\n" + toolSysMsg
// add to chat body
chatBody.Messages = append(chatBody.Messages, models.RoleMsg{Role: cfg.ToolRole, Content: toolSysMsg})
}
if msg != "" { // otherwise let the bot continue
newMsg := models.RoleMsg{Role: role, Content: msg}
chatBody.Messages = append(chatBody.Messages, newMsg)
// if rag
if cfg.RAGEnabled {
ragResp, err := chatRagUse(newMsg.Content)
if err != nil {
logger.Error("failed to form a rag msg", "error", err)
return nil, err
}
ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
chatBody.Messages = append(chatBody.Messages, ragMsg)
}
}
data, err := json.Marshal(chatBody)
if err != nil {
logger.Error("failed to form a msg", "error", err)
return nil, err
}
return bytes.NewReader(data), nil
}
// deepseek
func (ds DeepSeekerCompletion) ParseChunk(data []byte) (string, bool, error) {
llmchunk := models.DSCompletionResp{}
if err := json.Unmarshal(data, &llmchunk); err != nil {
logger.Error("failed to decode", "error", err, "line", string(data))
return "", false, err
}
if llmchunk.Choices[0].FinishReason != "" {
if llmchunk.Choices[0].Text != "" {
logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
}
return llmchunk.Choices[0].Text, true, nil
}
return llmchunk.Choices[0].Text, false, nil
}
func (ds DeepSeekerCompletion) FormMsg(msg, role string, resume bool) (io.Reader, error) {
logger.Debug("formmsg deepseekercompletion", "link", cfg.CurrentAPI)
if msg != "" { // otherwise let the bot to continue
newMsg := models.RoleMsg{Role: role, Content: msg}
chatBody.Messages = append(chatBody.Messages, newMsg)
// if rag
if cfg.RAGEnabled {
ragResp, err := chatRagUse(newMsg.Content)
if err != nil {
logger.Error("failed to form a rag msg", "error", err)
return nil, err
}
ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
chatBody.Messages = append(chatBody.Messages, ragMsg)
}
}
if cfg.ToolUse && !resume {
// add to chat body
chatBody.Messages = append(chatBody.Messages, models.RoleMsg{Role: cfg.ToolRole, Content: toolSysMsg})
}
messages := make([]string, len(chatBody.Messages))
for i, m := range chatBody.Messages {
messages[i] = m.ToPrompt()
}
prompt := strings.Join(messages, "\n")
// strings builder?
if !resume {
botMsgStart := "\n" + cfg.AssistantRole + ":\n"
prompt += botMsgStart
}
if cfg.ThinkUse && !cfg.ToolUse {
prompt += "<think>"
}
logger.Debug("checking prompt for /completion", "tool_use", cfg.ToolUse,
"msg", msg, "resume", resume, "prompt", prompt)
payload := models.NewDSCompletionReq(prompt, chatBody.Model,
defaultLCPProps["temp"], cfg)
data, err := json.Marshal(payload)
if err != nil {
logger.Error("failed to form a msg", "error", err)
return nil, err
}
return bytes.NewReader(data), nil
}
func (ds DeepSeekerChat) ParseChunk(data []byte) (string, bool, error) {
llmchunk := models.DSChatStreamResp{}
if err := json.Unmarshal(data, &llmchunk); err != nil {
logger.Error("failed to decode", "error", err, "line", string(data))
return "", false, err
}
if llmchunk.Choices[0].FinishReason != "" {
if llmchunk.Choices[0].Delta.Content != "" {
logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
}
return llmchunk.Choices[0].Delta.Content, true, nil
}
if llmchunk.Choices[0].Delta.ReasoningContent != "" {
return llmchunk.Choices[0].Delta.ReasoningContent, false, nil
}
return llmchunk.Choices[0].Delta.Content, false, nil
}
func (ds DeepSeekerChat) FormMsg(msg, role string, resume bool) (io.Reader, error) {
logger.Debug("formmsg deepseekerchat", "link", cfg.CurrentAPI)
if cfg.ToolUse && !resume {
// prompt += "\n" + cfg.ToolRole + ":\n" + toolSysMsg
// add to chat body
chatBody.Messages = append(chatBody.Messages, models.RoleMsg{Role: cfg.ToolRole, Content: toolSysMsg})
}
if msg != "" { // otherwise let the bot continue
newMsg := models.RoleMsg{Role: role, Content: msg}
chatBody.Messages = append(chatBody.Messages, newMsg)
// if rag
if cfg.RAGEnabled {
ragResp, err := chatRagUse(newMsg.Content)
if err != nil {
logger.Error("failed to form a rag msg", "error", err)
return nil, err
}
ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
chatBody.Messages = append(chatBody.Messages, ragMsg)
}
}
// Create copy of chat body with standardized user role
// modifiedBody := *chatBody
bodyCopy := &models.ChatBody{
Messages: make([]models.RoleMsg, len(chatBody.Messages)),
Model: chatBody.Model,
Stream: chatBody.Stream,
}
// modifiedBody.Messages = make([]models.RoleMsg, len(chatBody.Messages))
for i, msg := range chatBody.Messages {
logger.Debug("checking roles", "#", i, "role", msg.Role)
if msg.Role == cfg.UserRole || i == 1 {
bodyCopy.Messages[i].Role = "user"
logger.Debug("replaced role in body", "#", i)
} else {
bodyCopy.Messages[i] = msg
}
}
dsBody := models.NewDSCharReq(*bodyCopy)
data, err := json.Marshal(dsBody)
if err != nil {
logger.Error("failed to form a msg", "error", err)
return nil, err
}
return bytes.NewReader(data), nil
}
|