summaryrefslogtreecommitdiff
path: root/llm.go
blob: be7f418a510df480b615b6d3b1aa53c7a4bf1619 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
package main

import (
	"bytes"
	"elefant/models"
	"encoding/json"
	"io"
	"strings"
)

type ChunkParser interface {
	ParseChunk([]byte) (string, bool, error)
	FormMsg(msg, role string) (io.Reader, error)
}

func initChunkParser() {
	chunkParser = LlamaCPPeer{}
	if strings.Contains(cfg.CurrentAPI, "v1") {
		logger.Info("chosen openai parser")
		chunkParser = OpenAIer{}
		return
	}
	logger.Info("chosen llamacpp parser")
}

type LlamaCPPeer struct {
}
type OpenAIer struct {
}

func (lcp LlamaCPPeer) FormMsg(msg, role string) (io.Reader, error) {
	if msg != "" { // otherwise let the bot continue
		// if role == cfg.UserRole {
		// 	msg = msg + cfg.AssistantRole + ":"
		// }
		newMsg := models.RoleMsg{Role: role, Content: msg}
		chatBody.Messages = append(chatBody.Messages, newMsg)
		// if rag
		if cfg.RAGEnabled {
			ragResp, err := chatRagUse(newMsg.Content)
			if err != nil {
				logger.Error("failed to form a rag msg", "error", err)
				return nil, err
			}
			ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
			chatBody.Messages = append(chatBody.Messages, ragMsg)
		}
	}
	messages := make([]string, len(chatBody.Messages))
	for i, m := range chatBody.Messages {
		messages[i] = m.ToPrompt()
	}
	prompt := strings.Join(messages, "\n")
	botMsgStart := "\n" + cfg.AssistantRole + ":\n"
	payload := models.NewLCPReq(prompt+botMsgStart, role, defaultLCPProps)
	data, err := json.Marshal(payload)
	if err != nil {
		logger.Error("failed to form a msg", "error", err)
		return nil, err
	}
	return bytes.NewReader(data), nil
}

func (lcp LlamaCPPeer) ParseChunk(data []byte) (string, bool, error) {
	llmchunk := models.LlamaCPPResp{}
	if err := json.Unmarshal(data, &llmchunk); err != nil {
		logger.Error("failed to decode", "error", err, "line", string(data))
		return "", false, err
	}
	if llmchunk.Stop {
		if llmchunk.Content != "" {
			logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
		}
		return llmchunk.Content, true, nil
	}
	return llmchunk.Content, false, nil
}

func (op OpenAIer) ParseChunk(data []byte) (string, bool, error) {
	llmchunk := models.LLMRespChunk{}
	if err := json.Unmarshal(data, &llmchunk); err != nil {
		logger.Error("failed to decode", "error", err, "line", string(data))
		return "", false, err
	}
	content := llmchunk.Choices[len(llmchunk.Choices)-1].Delta.Content
	if llmchunk.Choices[len(llmchunk.Choices)-1].FinishReason == "stop" {
		if content != "" {
			logger.Error("text inside of finish llmchunk", "chunk", llmchunk)
		}
		return content, true, nil
	}
	return content, false, nil
}

func (op OpenAIer) FormMsg(msg, role string) (io.Reader, error) {
	if msg != "" { // otherwise let the bot continue
		newMsg := models.RoleMsg{Role: role, Content: msg}
		chatBody.Messages = append(chatBody.Messages, newMsg)
		// if rag
		if cfg.RAGEnabled {
			ragResp, err := chatRagUse(newMsg.Content)
			if err != nil {
				logger.Error("failed to form a rag msg", "error", err)
				return nil, err
			}
			ragMsg := models.RoleMsg{Role: cfg.ToolRole, Content: ragResp}
			chatBody.Messages = append(chatBody.Messages, ragMsg)
		}
	}
	data, err := json.Marshal(chatBody)
	if err != nil {
		logger.Error("failed to form a msg", "error", err)
		return nil, err
	}
	return bytes.NewReader(data), nil
}