summaryrefslogtreecommitdiff
path: root/rag_new/storage.go
diff options
context:
space:
mode:
Diffstat (limited to 'rag_new/storage.go')
-rw-r--r--rag_new/storage.go300
1 files changed, 0 insertions, 300 deletions
diff --git a/rag_new/storage.go b/rag_new/storage.go
deleted file mode 100644
index 2ab56fb..0000000
--- a/rag_new/storage.go
+++ /dev/null
@@ -1,300 +0,0 @@
-package rag_new
-
-import (
- "gf-lt/models"
- "gf-lt/storage"
- "encoding/binary"
- "fmt"
- "log/slog"
- "sort"
- "strings"
- "unsafe"
-
- "github.com/jmoiron/sqlx"
-)
-
-// VectorStorage handles storing and retrieving vectors from SQLite
-type VectorStorage struct {
- logger *slog.Logger
- sqlxDB *sqlx.DB
- store storage.FullRepo
-}
-
-func NewVectorStorage(logger *slog.Logger, store storage.FullRepo) *VectorStorage {
- return &VectorStorage{
- logger: logger,
- sqlxDB: store.DB(), // Use the new DB() method
- store: store,
- }
-}
-
-// CreateTables creates the necessary tables for vector storage
-func (vs *VectorStorage) CreateTables() error {
- // Create tables for different embedding dimensions
- queries := []string{
- `CREATE TABLE IF NOT EXISTS embeddings_384 (
- id INTEGER PRIMARY KEY AUTOINCREMENT,
- embeddings BLOB NOT NULL,
- slug TEXT NOT NULL,
- raw_text TEXT NOT NULL,
- filename TEXT NOT NULL,
- created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
- )`,
- `CREATE TABLE IF NOT EXISTS embeddings_5120 (
- id INTEGER PRIMARY KEY AUTOINCREMENT,
- embeddings BLOB NOT NULL,
- slug TEXT NOT NULL,
- raw_text TEXT NOT NULL,
- filename TEXT NOT NULL,
- created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
- )`,
- // Indexes for better performance
- `CREATE INDEX IF NOT EXISTS idx_embeddings_384_filename ON embeddings_384(filename)`,
- `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_filename ON embeddings_5120(filename)`,
- `CREATE INDEX IF NOT EXISTS idx_embeddings_384_slug ON embeddings_384(slug)`,
- `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_slug ON embeddings_5120(slug)`,
-
- // Additional indexes that may help with searches
- `CREATE INDEX IF NOT EXISTS idx_embeddings_384_created_at ON embeddings_384(created_at)`,
- `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_created_at ON embeddings_5120(created_at)`,
- }
-
- for _, query := range queries {
- if _, err := vs.sqlxDB.Exec(query); err != nil {
- return fmt.Errorf("failed to create table: %w", err)
- }
- }
- return nil
-}
-
-// SerializeVector converts []float32 to binary blob
-func SerializeVector(vec []float32) []byte {
- buf := make([]byte, len(vec)*4) // 4 bytes per float32
- for i, v := range vec {
- binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v))
- }
- return buf
-}
-
-// DeserializeVector converts binary blob back to []float32
-func DeserializeVector(data []byte) []float32 {
- count := len(data) / 4
- vec := make([]float32, count)
- for i := 0; i < count; i++ {
- vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:]))
- }
- return vec
-}
-
-// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32
-func mathFloat32bits(f float32) uint32 {
- return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4])
-}
-
-func mathBitsToFloat32(b uint32) float32 {
- return *(*float32)(unsafe.Pointer(&b))
-}
-
-// WriteVector stores an embedding vector in the database
-func (vs *VectorStorage) WriteVector(row *models.VectorRow) error {
- tableName, err := vs.getTableName(row.Embeddings)
- if err != nil {
- return err
- }
-
- // Serialize the embeddings to binary
- serializedEmbeddings := SerializeVector(row.Embeddings)
-
- query := fmt.Sprintf(
- "INSERT INTO %s (embeddings, slug, raw_text, filename) VALUES (?, ?, ?, ?)",
- tableName,
- )
-
- if _, err := vs.sqlxDB.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName); err != nil {
- vs.logger.Error("failed to write vector", "error", err, "slug", row.Slug)
- return err
- }
-
- return nil
-}
-
-// getTableName determines which table to use based on embedding size
-func (vs *VectorStorage) getTableName(emb []float32) (string, error) {
- switch len(emb) {
- case 384:
- return "embeddings_384", nil
- case 5120:
- return "embeddings_5120", nil
- default:
- return "", fmt.Errorf("no table for embedding size of %d", len(emb))
- }
-}
-
-// SearchClosest finds vectors closest to the query vector using efficient cosine similarity calculation
-func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, error) {
- tableName, err := vs.getTableName(query)
- if err != nil {
- return nil, err
- }
-
- // For better performance, instead of loading all vectors at once,
- // we'll implement batching and potentially add L2 distance-based pre-filtering
- // since cosine similarity is related to L2 distance for normalized vectors
-
- querySQL := fmt.Sprintf("SELECT embeddings, slug, raw_text, filename FROM %s", tableName)
- rows, err := vs.sqlxDB.Query(querySQL)
- if err != nil {
- return nil, err
- }
- defer rows.Close()
-
- // Use a min-heap or simple slice to keep track of top 3 closest vectors
- type SearchResult struct {
- vector models.VectorRow
- distance float32
- }
-
- var topResults []SearchResult
-
- // Process vectors one by one to avoid loading everything into memory
- for rows.Next() {
- var (
- embeddingsBlob []byte
- slug, rawText, fileName string
- )
-
- if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil {
- vs.logger.Error("failed to scan row", "error", err)
- continue
- }
-
- storedEmbeddings := DeserializeVector(embeddingsBlob)
-
- // Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar)
- similarity := cosineSimilarity(query, storedEmbeddings)
- distance := 1 - similarity // Convert to distance where 0 is most similar
-
- result := SearchResult{
- vector: models.VectorRow{
- Embeddings: storedEmbeddings,
- Slug: slug,
- RawText: rawText,
- FileName: fileName,
- },
- distance: distance,
- }
-
- // Add to top results and maintain only top 3
- topResults = append(topResults, result)
-
- // Sort and keep only top 3
- sort.Slice(topResults, func(i, j int) bool {
- return topResults[i].distance < topResults[j].distance
- })
-
- if len(topResults) > 3 {
- topResults = topResults[:3] // Keep only closest 3
- }
- }
-
- // Convert back to VectorRow slice
- var results []models.VectorRow
- for _, result := range topResults {
- result.vector.Distance = result.distance
- results = append(results, result.vector)
- }
-
- return results, nil
-}
-
-// ListFiles returns a list of all loaded files
-func (vs *VectorStorage) ListFiles() ([]string, error) {
- var fileLists [][]string
-
- // Query both tables and combine results
- for _, table := range []string{"embeddings_384", "embeddings_5120"} {
- query := fmt.Sprintf("SELECT DISTINCT filename FROM %s", table)
- rows, err := vs.sqlxDB.Query(query)
- if err != nil {
- // Continue if one table doesn't exist
- continue
- }
-
- var files []string
- for rows.Next() {
- var filename string
- if err := rows.Scan(&filename); err != nil {
- continue
- }
- files = append(files, filename)
- }
- rows.Close()
-
- fileLists = append(fileLists, files)
- }
-
- // Combine and deduplicate
- fileSet := make(map[string]bool)
- var allFiles []string
- for _, files := range fileLists {
- for _, file := range files {
- if !fileSet[file] {
- fileSet[file] = true
- allFiles = append(allFiles, file)
- }
- }
- }
-
- return allFiles, nil
-}
-
-// RemoveEmbByFileName removes all embeddings associated with a specific filename
-func (vs *VectorStorage) RemoveEmbByFileName(filename string) error {
- var errors []string
-
- for _, table := range []string{"embeddings_384", "embeddings_5120"} {
- query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table)
- if _, err := vs.sqlxDB.Exec(query, filename); err != nil {
- errors = append(errors, err.Error())
- }
- }
-
- if len(errors) > 0 {
- return fmt.Errorf("errors occurred: %s", strings.Join(errors, "; "))
- }
-
- return nil
-}
-
-// cosineSimilarity calculates the cosine similarity between two vectors
-func cosineSimilarity(a, b []float32) float32 {
- if len(a) != len(b) {
- return 0.0
- }
-
- var dotProduct, normA, normB float32
- for i := 0; i < len(a); i++ {
- dotProduct += a[i] * b[i]
- normA += a[i] * a[i]
- normB += b[i] * b[i]
- }
-
- if normA == 0 || normB == 0 {
- return 0.0
- }
-
- return dotProduct / (sqrt(normA) * sqrt(normB))
-}
-
-// sqrt returns the square root of a float32
-func sqrt(f float32) float32 {
- // A simple implementation of square root using Newton's method
- if f == 0 {
- return 0
- }
- guess := f / 2
- for i := 0; i < 10; i++ { // 10 iterations should be enough for good precision
- guess = (guess + f/guess) / 2
- }
- return guess
-} \ No newline at end of file