summaryrefslogtreecommitdiff
path: root/rag_new/rag.go
diff options
context:
space:
mode:
Diffstat (limited to 'rag_new/rag.go')
-rw-r--r--rag_new/rag.go260
1 files changed, 0 insertions, 260 deletions
diff --git a/rag_new/rag.go b/rag_new/rag.go
deleted file mode 100644
index d012087..0000000
--- a/rag_new/rag.go
+++ /dev/null
@@ -1,260 +0,0 @@
-package rag_new
-
-import (
- "gf-lt/config"
- "gf-lt/models"
- "gf-lt/storage"
- "fmt"
- "log/slog"
- "os"
- "path"
- "strings"
- "sync"
-
- "github.com/neurosnap/sentences/english"
-)
-
-var (
- // Status messages for TUI integration
- LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking
- FinishedRAGStatus = "finished loading RAG file; press Enter"
- LoadedFileRAGStatus = "loaded file"
- ErrRAGStatus = "some error occurred; failed to transfer data to vector db"
-)
-
-type RAG struct {
- logger *slog.Logger
- store storage.FullRepo
- cfg *config.Config
- embedder Embedder
- storage *VectorStorage
-}
-
-func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG {
- // Initialize with API embedder by default, could be configurable later
- embedder := NewAPIEmbedder(l, cfg)
-
- rag := &RAG{
- logger: l,
- store: s,
- cfg: cfg,
- embedder: embedder,
- storage: NewVectorStorage(l, s),
- }
-
- // Create the necessary tables
- if err := rag.storage.CreateTables(); err != nil {
- l.Error("failed to create vector tables", "error", err)
- }
-
- return rag
-}
-
-func wordCounter(sentence string) int {
- return len(strings.Split(strings.TrimSpace(sentence), " "))
-}
-
-func (r *RAG) LoadRAG(fpath string) error {
- data, err := os.ReadFile(fpath)
- if err != nil {
- return err
- }
- r.logger.Debug("rag: loaded file", "fp", fpath)
- LongJobStatusCh <- LoadedFileRAGStatus
-
- fileText := string(data)
- tokenizer, err := english.NewSentenceTokenizer(nil)
- if err != nil {
- return err
- }
- sentences := tokenizer.Tokenize(fileText)
- sents := make([]string, len(sentences))
- for i, s := range sentences {
- sents[i] = s.Text
- }
-
- // Group sentences into paragraphs based on word limit
- paragraphs := []string{}
- par := strings.Builder{}
- for i := 0; i < len(sents); i++ {
- // Only add sentences that aren't empty
- if strings.TrimSpace(sents[i]) != "" {
- if par.Len() > 0 {
- par.WriteString(" ") // Add space between sentences
- }
- par.WriteString(sents[i])
- }
-
- if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) {
- paragraph := strings.TrimSpace(par.String())
- if paragraph != "" {
- paragraphs = append(paragraphs, paragraph)
- }
- par.Reset()
- }
- }
-
- // Handle any remaining content in the paragraph buffer
- if par.Len() > 0 {
- paragraph := strings.TrimSpace(par.String())
- if paragraph != "" {
- paragraphs = append(paragraphs, paragraph)
- }
- }
-
- // Adjust batch size if needed
- if len(paragraphs) < int(r.cfg.RAGBatchSize) && len(paragraphs) > 0 {
- r.cfg.RAGBatchSize = len(paragraphs)
- }
-
- if len(paragraphs) == 0 {
- return fmt.Errorf("no valid paragraphs found in file")
- }
-
- var (
- maxChSize = 100
- left = 0
- right = r.cfg.RAGBatchSize
- batchCh = make(chan map[int][]string, maxChSize)
- vectorCh = make(chan []models.VectorRow, maxChSize)
- errCh = make(chan error, 1)
- doneCh = make(chan bool, 1)
- lock = new(sync.Mutex)
- )
-
- defer close(doneCh)
- defer close(errCh)
- defer close(batchCh)
-
- // Fill input channel with batches
- ctn := 0
- totalParagraphs := len(paragraphs)
- for {
- if int(right) > totalParagraphs {
- batchCh <- map[int][]string{left: paragraphs[left:]}
- break
- }
- batchCh <- map[int][]string{left: paragraphs[left:right]}
- left, right = right, right+r.cfg.RAGBatchSize
- ctn++
- }
-
- finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", ctn+1, len(paragraphs), len(sents))
- r.logger.Debug(finishedBatchesMsg)
- LongJobStatusCh <- finishedBatchesMsg
-
- // Start worker goroutines
- for w := 0; w < int(r.cfg.RAGWorkers); w++ {
- go r.batchToVectorAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath))
- }
-
- // Wait for embedding to be done
- <-doneCh
-
- // Write vectors to storage
- return r.writeVectors(vectorCh)
-}
-
-func (r *RAG) writeVectors(vectorCh chan []models.VectorRow) error {
- for {
- for batch := range vectorCh {
- for _, vector := range batch {
- if err := r.storage.WriteVector(&vector); err != nil {
- r.logger.Error("failed to write vector", "error", err, "slug", vector.Slug)
- LongJobStatusCh <- ErrRAGStatus
- continue // a duplicate is not critical
- }
- }
- r.logger.Debug("wrote batch to db", "size", len(batch), "vector_chan_len", len(vectorCh))
- if len(vectorCh) == 0 {
- r.logger.Debug("finished writing vectors")
- LongJobStatusCh <- FinishedRAGStatus
- return nil
- }
- }
- }
-}
-
-func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[int][]string,
- vectorCh chan<- []models.VectorRow, errCh chan error, doneCh chan bool, filename string) {
- defer func() {
- if len(doneCh) == 0 {
- doneCh <- true
- }
- }()
-
- for {
- lock.Lock()
- if len(inputCh) == 0 {
- lock.Unlock()
- return
- }
-
- select {
- case linesMap := <-inputCh:
- for leftI, lines := range linesMap {
- if err := r.fetchEmb(lines, errCh, vectorCh, fmt.Sprintf("%s_%d", filename, leftI), filename); err != nil {
- r.logger.Error("error fetching embeddings", "error", err, "worker", id)
- lock.Unlock()
- return
- }
- }
- lock.Unlock()
- case err := <-errCh:
- r.logger.Error("got an error from error channel", "error", err)
- lock.Unlock()
- return
- default:
- lock.Unlock()
- }
-
- r.logger.Debug("processed batch", "batches#", len(inputCh), "worker#", id)
- LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id)
- }
-}
-
-func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []models.VectorRow, slug, filename string) error {
- embeddings, err := r.embedder.Embed(lines)
- if err != nil {
- r.logger.Error("failed to embed lines", "err", err.Error())
- errCh <- err
- return err
- }
-
- if len(embeddings) == 0 {
- err := fmt.Errorf("no embeddings returned")
- r.logger.Error("empty embeddings")
- errCh <- err
- return err
- }
-
- vectors := make([]models.VectorRow, len(embeddings))
- for i, emb := range embeddings {
- vector := models.VectorRow{
- Embeddings: emb,
- RawText: lines[i],
- Slug: fmt.Sprintf("%s_%d", slug, i),
- FileName: filename,
- }
- vectors[i] = vector
- }
-
- vectorCh <- vectors
- return nil
-}
-
-func (r *RAG) LineToVector(line string) ([]float32, error) {
- return r.embedder.EmbedSingle(line)
-}
-
-func (r *RAG) SearchEmb(emb *models.EmbeddingResp) ([]models.VectorRow, error) {
- return r.storage.SearchClosest(emb.Embedding)
-}
-
-func (r *RAG) ListLoaded() ([]string, error) {
- return r.storage.ListFiles()
-}
-
-func (r *RAG) RemoveFile(filename string) error {
- return r.storage.RemoveEmbByFileName(filename)
-} \ No newline at end of file