summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--storage/migrations/002_add_vector.down.sql10
-rw-r--r--storage/migrations/002_add_vector.up.sql32
-rw-r--r--storage/storage_test.go87
-rw-r--r--storage/vector.go185
-rw-r--r--storage/vector.go.bak179
5 files changed, 189 insertions, 304 deletions
diff --git a/storage/migrations/002_add_vector.down.sql b/storage/migrations/002_add_vector.down.sql
new file mode 100644
index 0000000..71c1f51
--- /dev/null
+++ b/storage/migrations/002_add_vector.down.sql
@@ -0,0 +1,10 @@
+-- Drop vector storage tables
+DROP INDEX IF EXISTS idx_embeddings_384_filename;
+DROP INDEX IF EXISTS idx_embeddings_5120_filename;
+DROP INDEX IF EXISTS idx_embeddings_384_slug;
+DROP INDEX IF EXISTS idx_embeddings_5120_slug;
+DROP INDEX IF EXISTS idx_embeddings_384_created_at;
+DROP INDEX IF EXISTS idx_embeddings_5120_created_at;
+
+DROP TABLE IF EXISTS embeddings_384;
+DROP TABLE IF EXISTS embeddings_5120; \ No newline at end of file
diff --git a/storage/migrations/002_add_vector.up.sql b/storage/migrations/002_add_vector.up.sql
index 2ac4621..6e164ce 100644
--- a/storage/migrations/002_add_vector.up.sql
+++ b/storage/migrations/002_add_vector.up.sql
@@ -1,12 +1,26 @@
---CREATE VIRTUAL TABLE IF NOT EXISTS embeddings_5120 USING vec0(
--- embedding FLOAT[5120],
--- slug TEXT NOT NULL,
--- raw_text TEXT PRIMARY KEY,
---);
+-- Create tables for vector storage (replacing vec0 plugin usage)
+CREATE TABLE IF NOT EXISTS embeddings_384 (
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
+ embeddings BLOB NOT NULL,
+ slug TEXT NOT NULL,
+ raw_text TEXT NOT NULL,
+ filename TEXT NOT NULL DEFAULT '',
+ created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
+);
-CREATE VIRTUAL TABLE IF NOT EXISTS embeddings_384 USING vec0(
- embedding FLOAT[384],
+CREATE TABLE IF NOT EXISTS embeddings_5120 (
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
+ embeddings BLOB NOT NULL,
slug TEXT NOT NULL,
- raw_text TEXT PRIMARY KEY,
- filename TEXT NOT NULL DEFAULT ''
+ raw_text TEXT NOT NULL,
+ filename TEXT NOT NULL DEFAULT '',
+ created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
+
+-- Indexes for better performance
+CREATE INDEX IF NOT EXISTS idx_embeddings_384_filename ON embeddings_384(filename);
+CREATE INDEX IF NOT EXISTS idx_embeddings_5120_filename ON embeddings_5120(filename);
+CREATE INDEX IF NOT EXISTS idx_embeddings_384_slug ON embeddings_384(slug);
+CREATE INDEX IF NOT EXISTS idx_embeddings_5120_slug ON embeddings_5120(slug);
+CREATE INDEX IF NOT EXISTS idx_embeddings_384_created_at ON embeddings_384(created_at);
+CREATE INDEX IF NOT EXISTS idx_embeddings_5120_created_at ON embeddings_5120(created_at);
diff --git a/storage/storage_test.go b/storage/storage_test.go
index a1c4cf4..a4f2bdd 100644
--- a/storage/storage_test.go
+++ b/storage/storage_test.go
@@ -1,8 +1,8 @@
package storage
import (
- "gf-lt/models"
"fmt"
+ "gf-lt/models"
"log/slog"
"os"
"testing"
@@ -173,88 +173,3 @@ func TestChatHistory(t *testing.T) {
t.Errorf("Expected 0 chats, got %d", len(chats))
}
}
-
-// func TestVecTable(t *testing.T) {
-// // healthcheck
-// db, err := sqlite3.Open(":memory:")
-// if err != nil {
-// t.Fatal(err)
-// }
-// stmt, _, err := db.Prepare(`SELECT sqlite_version(), vec_version()`)
-// if err != nil {
-// t.Fatal(err)
-// }
-// stmt.Step()
-// log.Printf("sqlite_version=%s, vec_version=%s\n", stmt.ColumnText(0), stmt.ColumnText(1))
-// stmt.Close()
-// // migration
-// err = db.Exec("CREATE VIRTUAL TABLE vec_items USING vec0(embedding float[4], chat_name TEXT NOT NULL)")
-// if err != nil {
-// t.Fatal(err)
-// }
-// // data prep and insert
-// items := map[int][]float32{
-// 1: {0.1, 0.1, 0.1, 0.1},
-// 2: {0.2, 0.2, 0.2, 0.2},
-// 3: {0.3, 0.3, 0.3, 0.3},
-// 4: {0.4, 0.4, 0.4, 0.4},
-// 5: {0.5, 0.5, 0.5, 0.5},
-// }
-// q := []float32{0.4, 0.3, 0.3, 0.3}
-// stmt, _, err = db.Prepare("INSERT INTO vec_items(rowid, embedding, chat_name) VALUES (?, ?, ?)")
-// if err != nil {
-// t.Fatal(err)
-// }
-// for id, values := range items {
-// v, err := sqlite_vec.SerializeFloat32(values)
-// if err != nil {
-// t.Fatal(err)
-// }
-// stmt.BindInt(1, id)
-// stmt.BindBlob(2, v)
-// stmt.BindText(3, "some_chat")
-// err = stmt.Exec()
-// if err != nil {
-// t.Fatal(err)
-// }
-// stmt.Reset()
-// }
-// stmt.Close()
-// // select | vec search
-// stmt, _, err = db.Prepare(`
-// SELECT
-// rowid,
-// distance,
-// embedding
-// FROM vec_items
-// WHERE embedding MATCH ?
-// ORDER BY distance
-// LIMIT 3
-// `)
-// if err != nil {
-// t.Fatal(err)
-// }
-// query, err := sqlite_vec.SerializeFloat32(q)
-// if err != nil {
-// t.Fatal(err)
-// }
-// stmt.BindBlob(1, query)
-// for stmt.Step() {
-// rowid := stmt.ColumnInt64(0)
-// distance := stmt.ColumnFloat(1)
-// emb := stmt.ColumnRawText(2)
-// floats := decodeUnsafe(emb)
-// log.Printf("rowid=%d, distance=%f, floats=%v\n", rowid, distance, floats)
-// }
-// if err := stmt.Err(); err != nil {
-// t.Fatal(err)
-// }
-// err = stmt.Close()
-// if err != nil {
-// t.Fatal(err)
-// }
-// err = db.Close()
-// if err != nil {
-// t.Fatal(err)
-// }
-// }
diff --git a/storage/vector.go b/storage/vector.go
index 900803c..73bfe29 100644
--- a/storage/vector.go
+++ b/storage/vector.go
@@ -1,9 +1,9 @@
package storage
import (
- "gf-lt/models"
"encoding/binary"
"fmt"
+ "gf-lt/models"
"unsafe"
"github.com/jmoiron/sqlx"
@@ -26,7 +26,7 @@ func SerializeVector(vec []float32) []byte {
return buf
}
-// DeserializeVector converts binary blob back to []float32
+// DeserializeVector converts binary blob back to []float32
func DeserializeVector(data []byte) []float32 {
count := len(data) / 4
vec := make([]float32, count)
@@ -66,50 +66,175 @@ func (p ProviderSQL) WriteVector(row *models.VectorRow) error {
if err != nil {
return err
}
-
+
serializedEmbeddings := SerializeVector(row.Embeddings)
-
- query := fmt.Sprintf("INSERT INTO %s(embedding, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName)
+
+ query := fmt.Sprintf("INSERT INTO %s(embeddings, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName)
_, err = p.db.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName)
-
+
return err
}
-
-
func (p ProviderSQL) SearchClosest(q []float32) ([]models.VectorRow, error) {
- // TODO: This function has been temporarily disabled to avoid deprecated library usage.
- // In the new RAG implementation, this functionality is now in rag_new package.
- // For compatibility, return empty result instead of using deprecated vector extension.
- return []models.VectorRow{}, nil
-}
+ tableName, err := fetchTableName(q)
+ if err != nil {
+ return nil, err
+ }
-func (p ProviderSQL) ListFiles() ([]string, error) {
- q := fmt.Sprintf("SELECT filename FROM %s GROUP BY filename", vecTableName384)
- rows, err := p.db.Query(q)
+ querySQL := fmt.Sprintf("SELECT embedding, slug, raw_text, filename FROM %s", tableName)
+ rows, err := p.db.Query(querySQL)
if err != nil {
return nil, err
}
defer rows.Close()
-
- resp := []string{}
+
+ type SearchResult struct {
+ vector models.VectorRow
+ distance float32
+ }
+
+ var topResults []SearchResult
+
for rows.Next() {
- var filename string
- if err := rows.Scan(&filename); err != nil {
- return nil, err
+ var (
+ embeddingsBlob []byte
+ slug, rawText, fileName string
+ )
+
+ if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil {
+ continue
+ }
+
+ storedEmbeddings := DeserializeVector(embeddingsBlob)
+
+ // Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar)
+ similarity := cosineSimilarity(q, storedEmbeddings)
+ distance := 1 - similarity // Convert to distance where 0 is most similar
+
+ result := SearchResult{
+ vector: models.VectorRow{
+ Embeddings: storedEmbeddings,
+ Slug: slug,
+ RawText: rawText,
+ FileName: fileName,
+ },
+ distance: distance,
+ }
+
+ // Add to top results and maintain only top results
+ topResults = append(topResults, result)
+
+ // Sort and keep only top results
+ // We'll keep the top 3 closest vectors
+ if len(topResults) > 3 {
+ // Simple sort and truncate to maintain only 3 best matches
+ for i := 0; i < len(topResults); i++ {
+ for j := i + 1; j < len(topResults); j++ {
+ if topResults[i].distance > topResults[j].distance {
+ topResults[i], topResults[j] = topResults[j], topResults[i]
+ }
+ }
+ }
+ topResults = topResults[:3]
}
- resp = append(resp, filename)
}
-
- if err := rows.Err(); err != nil {
- return nil, err
+
+ // Convert back to VectorRow slice
+ results := make([]models.VectorRow, len(topResults))
+ for i, result := range topResults {
+ result.vector.Distance = result.distance
+ results[i] = result.vector
}
-
- return resp, nil
+
+ return results, nil
+}
+
+// cosineSimilarity calculates the cosine similarity between two vectors
+func cosineSimilarity(a, b []float32) float32 {
+ if len(a) != len(b) {
+ return 0.0
+ }
+
+ var dotProduct, normA, normB float32
+ for i := 0; i < len(a); i++ {
+ dotProduct += a[i] * b[i]
+ normA += a[i] * a[i]
+ normB += b[i] * b[i]
+ }
+
+ if normA == 0 || normB == 0 {
+ return 0.0
+ }
+
+ return dotProduct / (sqrt(normA) * sqrt(normB))
+}
+
+// sqrt returns the square root of a float32
+func sqrt(f float32) float32 {
+ // A simple implementation of square root using Newton's method
+ if f == 0 {
+ return 0
+ }
+ guess := f / 2
+ for i := 0; i < 10; i++ { // 10 iterations should be enough for good precision
+ guess = (guess + f/guess) / 2
+ }
+ return guess
+}
+
+func (p ProviderSQL) ListFiles() ([]string, error) {
+ fileLists := make([][]string, 0)
+
+ // Query both tables and combine results
+ for _, table := range []string{vecTableName384, vecTableName5120} {
+ query := fmt.Sprintf("SELECT DISTINCT filename FROM %s", table)
+ rows, err := p.db.Query(query)
+ if err != nil {
+ // Continue if one table doesn't exist
+ continue
+ }
+
+ var files []string
+ for rows.Next() {
+ var filename string
+ if err := rows.Scan(&filename); err != nil {
+ continue
+ }
+ files = append(files, filename)
+ }
+ rows.Close()
+
+ fileLists = append(fileLists, files)
+ }
+
+ // Combine and deduplicate
+ fileSet := make(map[string]bool)
+ var allFiles []string
+ for _, files := range fileLists {
+ for _, file := range files {
+ if !fileSet[file] {
+ fileSet[file] = true
+ allFiles = append(allFiles, file)
+ }
+ }
+ }
+
+ return allFiles, nil
}
func (p ProviderSQL) RemoveEmbByFileName(filename string) error {
- q := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", vecTableName384)
- _, err := p.db.Exec(q, filename)
- return err
+ var errors []string
+
+ for _, table := range []string{vecTableName384, vecTableName5120} {
+ query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table)
+ if _, err := p.db.Exec(query, filename); err != nil {
+ errors = append(errors, err.Error())
+ }
+ }
+
+ if len(errors) > 0 {
+ return fmt.Errorf("errors occurred: %s", fmt.Sprintf("%v", errors))
+ }
+
+ return nil
}
diff --git a/storage/vector.go.bak b/storage/vector.go.bak
deleted file mode 100644
index f663beb..0000000
--- a/storage/vector.go.bak
+++ /dev/null
@@ -1,179 +0,0 @@
-package storage
-
-import (
- "gf-lt/models"
- "encoding/binary"
- "fmt"
- "sort"
- "unsafe"
-)
-
-type VectorRepo interface {
- WriteVector(*models.VectorRow) error
- SearchClosest(q []float32) ([]models.VectorRow, error)
- ListFiles() ([]string, error)
- RemoveEmbByFileName(filename string) error
-}
-
-// SerializeVector converts []float32 to binary blob
-func SerializeVector(vec []float32) []byte {
- buf := make([]byte, len(vec)*4) // 4 bytes per float32
- for i, v := range vec {
- binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v))
- }
- return buf
-}
-
-// DeserializeVector converts binary blob back to []float32
-func DeserializeVector(data []byte) []float32 {
- count := len(data) / 4
- vec := make([]float32, count)
- for i := 0; i < count; i++ {
- vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:]))
- }
- return vec
-}
-
-// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32
-func mathFloat32bits(f float32) uint32 {
- return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4])
-}
-
-func mathBitsToFloat32(b uint32) float32 {
- return *(*float32)(unsafe.Pointer(&b))
-}
-
-var (
- vecTableName5120 = "embeddings_5120"
- vecTableName384 = "embeddings_384"
-)
-
-func fetchTableName(emb []float32) (string, error) {
- switch len(emb) {
- case 5120:
- return vecTableName5120, nil
- case 384:
- return vecTableName384, nil
- default:
- return "", fmt.Errorf("no table for the size of %d", len(emb))
- }
-}
-
-func (p ProviderSQL) WriteVector(row *models.VectorRow) error {
- tableName, err := fetchTableName(row.Embeddings)
- if err != nil {
- return err
- }
- stmt, _, err := p.s3Conn.Prepare(
- fmt.Sprintf("INSERT INTO %s(embedding, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName))
- if err != nil {
- p.logger.Error("failed to prep a stmt", "error", err)
- return err
- }
- defer stmt.Close()
- serializedEmbeddings := SerializeVector(row.Embeddings)
- if err := stmt.BindBlob(1, serializedEmbeddings); err != nil {
- p.logger.Error("failed to bind", "error", err)
- return err
- }
- if err := stmt.BindText(2, row.Slug); err != nil {
- p.logger.Error("failed to bind", "error", err)
- return err
- }
- if err := stmt.BindText(3, row.RawText); err != nil {
- p.logger.Error("failed to bind", "error", err)
- return err
- }
- if err := stmt.BindText(4, row.FileName); err != nil {
- p.logger.Error("failed to bind", "error", err)
- return err
- }
- err = stmt.Exec()
- if err != nil {
- return err
- }
- return nil
-}
-
-func decodeUnsafe(bs []byte) []float32 {
- return unsafe.Slice((*float32)(unsafe.Pointer(&bs[0])), len(bs)/4)
-}
-
-func (p ProviderSQL) SearchClosest(q []float32) ([]models.VectorRow, error) {
- tableName, err := fetchTableName(q)
- if err != nil {
- return nil, err
- }
- stmt, _, err := p.s3Conn.Prepare(
- fmt.Sprintf(`SELECT
- distance,
- embedding,
- slug,
- raw_text,
- filename
- FROM %s
- WHERE embedding MATCH ?
- ORDER BY distance
- LIMIT 3
- `, tableName))
- if err != nil {
- return nil, err
- }
- // This function needs to be completely rewritten to use the new binary storage approach
- if err != nil {
- return nil, err
- }
- if err := stmt.BindBlob(1, query); err != nil {
- p.logger.Error("failed to bind", "error", err)
- return nil, err
- }
- resp := []models.VectorRow{}
- for stmt.Step() {
- res := models.VectorRow{}
- res.Distance = float32(stmt.ColumnFloat(0))
- emb := stmt.ColumnRawText(1)
- res.Embeddings = decodeUnsafe(emb)
- res.Slug = stmt.ColumnText(2)
- res.RawText = stmt.ColumnText(3)
- res.FileName = stmt.ColumnText(4)
- resp = append(resp, res)
- }
- if err := stmt.Err(); err != nil {
- return nil, err
- }
- err = stmt.Close()
- if err != nil {
- return nil, err
- }
- return resp, nil
-}
-
-func (p ProviderSQL) ListFiles() ([]string, error) {
- q := fmt.Sprintf("SELECT filename FROM %s GROUP BY filename", vecTableName384)
- stmt, _, err := p.s3Conn.Prepare(q)
- if err != nil {
- return nil, err
- }
- defer stmt.Close()
- resp := []string{}
- for stmt.Step() {
- resp = append(resp, stmt.ColumnText(0))
- }
- if err := stmt.Err(); err != nil {
- return nil, err
- }
- return resp, nil
-}
-
-func (p ProviderSQL) RemoveEmbByFileName(filename string) error {
- q := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", vecTableName384)
- stmt, _, err := p.s3Conn.Prepare(q)
- if err != nil {
- return err
- }
- defer stmt.Close()
- if err := stmt.BindText(1, filename); err != nil {
- return err
- }
- return stmt.Exec()
-}