diff options
author | Grail Finder <wohilas@gmail.com> | 2025-10-19 13:14:56 +0300 |
---|---|---|
committer | Grail Finder <wohilas@gmail.com> | 2025-10-19 13:14:56 +0300 |
commit | 60ccaed2009c535c9c92c163995577fcde7aadb6 (patch) | |
tree | 4621fdbcd4b86cc32c7c05ff13b907136424f765 | |
parent | dfa164e871a62f814aeeb9ced6350e74a52f65b3 (diff) |
Chore: remove old rag
-rw-r--r-- | bot.go | 10 | ||||
-rw-r--r-- | rag/embedder.go (renamed from rag_new/embedder.go) | 17 | ||||
-rw-r--r-- | rag/main.go | 265 | ||||
-rw-r--r-- | rag/rag.go (renamed from rag_new/rag.go) | 69 | ||||
-rw-r--r-- | rag/storage.go (renamed from rag_new/storage.go) | 55 | ||||
-rw-r--r-- | storage/migrate.go | 6 | ||||
-rw-r--r-- | storage/storage.go | 10 | ||||
-rw-r--r-- | storage/vector.go | 62 |
8 files changed, 101 insertions, 393 deletions
@@ -9,7 +9,7 @@ import ( "gf-lt/config" "gf-lt/extra" "gf-lt/models" - "gf-lt/rag_new" + "gf-lt/rag" "gf-lt/storage" "io" "log/slog" @@ -41,7 +41,7 @@ var ( defaultStarter = []models.RoleMsg{} defaultStarterBytes = []byte{} interruptResp = false - ragger *rag_new.RAG + ragger *rag.RAG chunkParser ChunkParser lastToolCall *models.FuncCall //nolint:unused // TTS_ENABLED conditionally uses this @@ -277,13 +277,13 @@ func chatRagUse(qText string) (string, error) { logger.Error("failed to get embs", "error", err, "index", i, "question", q) continue } - + // Create EmbeddingResp struct for the search embeddingResp := &models.EmbeddingResp{ Embedding: emb, Index: 0, // Not used in search but required for the struct } - + vecs, err := ragger.SearchEmb(embeddingResp) if err != nil { logger.Error("failed to query embs", "error", err, "index", i, "question", q) @@ -571,7 +571,7 @@ func init() { if store == nil { os.Exit(1) } - ragger = rag_new.New(logger, store, cfg) + ragger = rag.New(logger, store, cfg) // https://github.com/coreydaley/ggerganov-llama.cpp/blob/master/examples/server/README.md // load all chats in memory if _, err := loadHistoryChats(); err != nil { diff --git a/rag_new/embedder.go b/rag/embedder.go index 27b975a..1804019 100644 --- a/rag_new/embedder.go +++ b/rag/embedder.go @@ -1,10 +1,10 @@ -package rag_new +package rag import ( "bytes" - "gf-lt/config" "encoding/json" "fmt" + "gf-lt/config" "log/slog" "net/http" ) @@ -17,9 +17,9 @@ type Embedder interface { // APIEmbedder implements embedder using an API (like Hugging Face, OpenAI, etc.) type APIEmbedder struct { - logger *slog.Logger - client *http.Client - cfg *config.Config + logger *slog.Logger + client *http.Client + cfg *config.Config } func NewAPIEmbedder(l *slog.Logger, cfg *config.Config) *APIEmbedder { @@ -44,11 +44,11 @@ func (a *APIEmbedder) Embed(text []string) ([][]float32, error) { a.logger.Error("failed to create new req", "err", err.Error()) return nil, err } - + if a.cfg.HFToken != "" { req.Header.Add("Authorization", "Bearer "+a.cfg.HFToken) } - + resp, err := a.client.Do(req) if err != nil { a.logger.Error("failed to embed text", "err", err.Error()) @@ -95,4 +95,5 @@ func (a *APIEmbedder) EmbedSingle(text string) ([]float32, error) { // 3. Converting text to embeddings without external API calls // // For now, we'll focus on the API implementation which is already working in the current system, -// and can be extended later when we have ONNX runtime integration
\ No newline at end of file +// and can be extended later when we have ONNX runtime integration + diff --git a/rag/main.go b/rag/main.go deleted file mode 100644 index b7e0c00..0000000 --- a/rag/main.go +++ /dev/null @@ -1,265 +0,0 @@ -package rag - -import ( - "bytes" - "gf-lt/config" - "gf-lt/models" - "gf-lt/storage" - "encoding/json" - "errors" - "fmt" - "log/slog" - "net/http" - "os" - "path" - "strings" - "sync" - - "github.com/neurosnap/sentences/english" -) - -var ( - LongJobStatusCh = make(chan string, 1) - // messages - FinishedRAGStatus = "finished loading RAG file; press Enter" - LoadedFileRAGStatus = "loaded file" - ErrRAGStatus = "some error occured; failed to transfer data to vector db" -) - -type RAG struct { - logger *slog.Logger - store storage.FullRepo - cfg *config.Config -} - -func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG { - return &RAG{ - logger: l, - store: s, - cfg: cfg, - } -} - -func wordCounter(sentence string) int { - return len(strings.Split(sentence, " ")) -} - -func (r *RAG) LoadRAG(fpath string) error { - data, err := os.ReadFile(fpath) - if err != nil { - return err - } - r.logger.Debug("rag: loaded file", "fp", fpath) - LongJobStatusCh <- LoadedFileRAGStatus - fileText := string(data) - tokenizer, err := english.NewSentenceTokenizer(nil) - if err != nil { - return err - } - sentences := tokenizer.Tokenize(fileText) - sents := make([]string, len(sentences)) - for i, s := range sentences { - sents[i] = s.Text - } - var ( - maxChSize = 1000 - left = 0 - right = r.cfg.RAGBatchSize - batchCh = make(chan map[int][]string, maxChSize) - vectorCh = make(chan []models.VectorRow, maxChSize) - errCh = make(chan error, 1) - doneCh = make(chan bool, 1) - lock = new(sync.Mutex) - ) - defer close(doneCh) - defer close(errCh) - defer close(batchCh) - // group sentences - paragraphs := []string{} - par := strings.Builder{} - for i := 0; i < len(sents); i++ { - par.WriteString(sents[i]) - if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) { - paragraphs = append(paragraphs, par.String()) - par.Reset() - } - } - if len(paragraphs) < int(r.cfg.RAGBatchSize) { - r.cfg.RAGBatchSize = len(paragraphs) - } - // fill input channel - ctn := 0 - for { - if int(right) > len(paragraphs) { - batchCh <- map[int][]string{left: paragraphs[left:]} - break - } - batchCh <- map[int][]string{left: paragraphs[left:right]} - left, right = right, right+r.cfg.RAGBatchSize - ctn++ - } - finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", len(batchCh), len(paragraphs), len(sents)) - r.logger.Debug(finishedBatchesMsg) - LongJobStatusCh <- finishedBatchesMsg - for w := 0; w < int(r.cfg.RAGWorkers); w++ { - go r.batchToVectorHFAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath)) - } - // wait for emb to be done - <-doneCh - // write to db - return r.writeVectors(vectorCh) -} - -func (r *RAG) writeVectors(vectorCh chan []models.VectorRow) error { - for { - for batch := range vectorCh { - for _, vector := range batch { - if err := r.store.WriteVector(&vector); err != nil { - r.logger.Error("failed to write vector", "error", err, "slug", vector.Slug) - LongJobStatusCh <- ErrRAGStatus - continue // a duplicate is not critical - // return err - } - } - r.logger.Debug("wrote batch to db", "size", len(batch), "vector_chan_len", len(vectorCh)) - if len(vectorCh) == 0 { - r.logger.Debug("finished writing vectors") - LongJobStatusCh <- FinishedRAGStatus - defer close(vectorCh) - return nil - } - } - } -} - -func (r *RAG) batchToVectorHFAsync(lock *sync.Mutex, id int, inputCh <-chan map[int][]string, - vectorCh chan<- []models.VectorRow, errCh chan error, doneCh chan bool, filename string) { - for { - lock.Lock() - if len(inputCh) == 0 { - if len(doneCh) == 0 { - doneCh <- true - } - lock.Unlock() - return - } - select { - case linesMap := <-inputCh: - for leftI, v := range linesMap { - r.fecthEmbHF(v, errCh, vectorCh, fmt.Sprintf("%s_%d", filename, leftI), filename) - } - lock.Unlock() - case err := <-errCh: - r.logger.Error("got an error", "error", err) - lock.Unlock() - return - } - r.logger.Debug("to vector batches", "batches#", len(inputCh), "worker#", id) - LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id) - } -} - -func (r *RAG) fecthEmbHF(lines []string, errCh chan error, vectorCh chan<- []models.VectorRow, slug, filename string) { - payload, err := json.Marshal( - map[string]any{"inputs": lines, "options": map[string]bool{"wait_for_model": true}}, - ) - if err != nil { - r.logger.Error("failed to marshal payload", "err:", err.Error()) - errCh <- err - return - } - // nolint - req, err := http.NewRequest("POST", r.cfg.EmbedURL, bytes.NewReader(payload)) - if err != nil { - r.logger.Error("failed to create new req", "err:", err.Error()) - errCh <- err - return - } - req.Header.Add("Authorization", "Bearer "+r.cfg.HFToken) - resp, err := http.DefaultClient.Do(req) - if err != nil { - r.logger.Error("failed to embedd line", "err:", err.Error()) - errCh <- err - return - } - defer resp.Body.Close() - if resp.StatusCode != 200 { - r.logger.Error("non 200 resp", "code", resp.StatusCode) - return - } - emb := [][]float32{} - if err := json.NewDecoder(resp.Body).Decode(&emb); err != nil { - r.logger.Error("failed to embedd line", "err:", err.Error()) - errCh <- err - return - } - if len(emb) == 0 { - r.logger.Error("empty emb") - err = errors.New("empty emb") - errCh <- err - return - } - vectors := make([]models.VectorRow, len(emb)) - for i, e := range emb { - vector := models.VectorRow{ - Embeddings: e, - RawText: lines[i], - Slug: fmt.Sprintf("%s_%d", slug, i), - FileName: filename, - } - vectors[i] = vector - } - vectorCh <- vectors -} - -func (r *RAG) LineToVector(line string) ([]float32, error) { - lines := []string{line} - payload, err := json.Marshal( - map[string]any{"inputs": lines, "options": map[string]bool{"wait_for_model": true}}, - ) - if err != nil { - r.logger.Error("failed to marshal payload", "err:", err.Error()) - return nil, err - } - // nolint - req, err := http.NewRequest("POST", r.cfg.EmbedURL, bytes.NewReader(payload)) - if err != nil { - r.logger.Error("failed to create new req", "err:", err.Error()) - return nil, err - } - req.Header.Add("Authorization", "Bearer "+r.cfg.HFToken) - resp, err := http.DefaultClient.Do(req) - if err != nil { - r.logger.Error("failed to embedd line", "err:", err.Error()) - return nil, err - } - defer resp.Body.Close() - if resp.StatusCode != 200 { - err = fmt.Errorf("non 200 resp; code: %v", resp.StatusCode) - r.logger.Error(err.Error()) - return nil, err - } - emb := [][]float32{} - if err := json.NewDecoder(resp.Body).Decode(&emb); err != nil { - r.logger.Error("failed to embedd line", "err:", err.Error()) - return nil, err - } - if len(emb) == 0 || len(emb[0]) == 0 { - r.logger.Error("empty emb") - err = errors.New("empty emb") - return nil, err - } - return emb[0], nil -} - -func (r *RAG) SearchEmb(emb *models.EmbeddingResp) ([]models.VectorRow, error) { - return r.store.SearchClosest(emb.Embedding) -} - -func (r *RAG) ListLoaded() ([]string, error) { - return r.store.ListFiles() -} - -func (r *RAG) RemoveFile(filename string) error { - return r.store.RemoveEmbByFileName(filename) -} diff --git a/rag_new/rag.go b/rag/rag.go index d012087..c05d38a 100644 --- a/rag_new/rag.go +++ b/rag/rag.go @@ -1,10 +1,10 @@ -package rag_new +package rag import ( + "fmt" "gf-lt/config" "gf-lt/models" "gf-lt/storage" - "fmt" "log/slog" "os" "path" @@ -16,37 +16,37 @@ import ( var ( // Status messages for TUI integration - LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking + LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking FinishedRAGStatus = "finished loading RAG file; press Enter" LoadedFileRAGStatus = "loaded file" ErrRAGStatus = "some error occurred; failed to transfer data to vector db" ) type RAG struct { - logger *slog.Logger - store storage.FullRepo - cfg *config.Config + logger *slog.Logger + store storage.FullRepo + cfg *config.Config embedder Embedder - storage *VectorStorage + storage *VectorStorage } func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG { // Initialize with API embedder by default, could be configurable later embedder := NewAPIEmbedder(l, cfg) - + rag := &RAG{ - logger: l, - store: s, - cfg: cfg, + logger: l, + store: s, + cfg: cfg, embedder: embedder, - storage: NewVectorStorage(l, s), + storage: NewVectorStorage(l, s), } - + // Create the necessary tables if err := rag.storage.CreateTables(); err != nil { l.Error("failed to create vector tables", "error", err) } - + return rag } @@ -61,7 +61,7 @@ func (r *RAG) LoadRAG(fpath string) error { } r.logger.Debug("rag: loaded file", "fp", fpath) LongJobStatusCh <- LoadedFileRAGStatus - + fileText := string(data) tokenizer, err := english.NewSentenceTokenizer(nil) if err != nil { @@ -72,7 +72,7 @@ func (r *RAG) LoadRAG(fpath string) error { for i, s := range sentences { sents[i] = s.Text } - + // Group sentences into paragraphs based on word limit paragraphs := []string{} par := strings.Builder{} @@ -84,7 +84,7 @@ func (r *RAG) LoadRAG(fpath string) error { } par.WriteString(sents[i]) } - + if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) { paragraph := strings.TrimSpace(par.String()) if paragraph != "" { @@ -93,7 +93,7 @@ func (r *RAG) LoadRAG(fpath string) error { par.Reset() } } - + // Handle any remaining content in the paragraph buffer if par.Len() > 0 { paragraph := strings.TrimSpace(par.String()) @@ -101,16 +101,16 @@ func (r *RAG) LoadRAG(fpath string) error { paragraphs = append(paragraphs, paragraph) } } - + // Adjust batch size if needed if len(paragraphs) < int(r.cfg.RAGBatchSize) && len(paragraphs) > 0 { r.cfg.RAGBatchSize = len(paragraphs) } - + if len(paragraphs) == 0 { return fmt.Errorf("no valid paragraphs found in file") } - + var ( maxChSize = 100 left = 0 @@ -121,11 +121,11 @@ func (r *RAG) LoadRAG(fpath string) error { doneCh = make(chan bool, 1) lock = new(sync.Mutex) ) - + defer close(doneCh) defer close(errCh) defer close(batchCh) - + // Fill input channel with batches ctn := 0 totalParagraphs := len(paragraphs) @@ -138,19 +138,19 @@ func (r *RAG) LoadRAG(fpath string) error { left, right = right, right+r.cfg.RAGBatchSize ctn++ } - + finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", ctn+1, len(paragraphs), len(sents)) r.logger.Debug(finishedBatchesMsg) LongJobStatusCh <- finishedBatchesMsg - + // Start worker goroutines for w := 0; w < int(r.cfg.RAGWorkers); w++ { go r.batchToVectorAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath)) } - + // Wait for embedding to be done <-doneCh - + // Write vectors to storage return r.writeVectors(vectorCh) } @@ -182,14 +182,14 @@ func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[in doneCh <- true } }() - + for { lock.Lock() if len(inputCh) == 0 { lock.Unlock() return } - + select { case linesMap := <-inputCh: for leftI, lines := range linesMap { @@ -207,7 +207,7 @@ func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[in default: lock.Unlock() } - + r.logger.Debug("processed batch", "batches#", len(inputCh), "worker#", id) LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id) } @@ -220,14 +220,14 @@ func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []model errCh <- err return err } - + if len(embeddings) == 0 { err := fmt.Errorf("no embeddings returned") r.logger.Error("empty embeddings") errCh <- err return err } - + vectors := make([]models.VectorRow, len(embeddings)) for i, emb := range embeddings { vector := models.VectorRow{ @@ -238,7 +238,7 @@ func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []model } vectors[i] = vector } - + vectorCh <- vectors return nil } @@ -257,4 +257,5 @@ func (r *RAG) ListLoaded() ([]string, error) { func (r *RAG) RemoveFile(filename string) error { return r.storage.RemoveEmbByFileName(filename) -}
\ No newline at end of file +} + diff --git a/rag_new/storage.go b/rag/storage.go index 2ab56fb..26ca0e3 100644 --- a/rag_new/storage.go +++ b/rag/storage.go @@ -1,10 +1,10 @@ -package rag_new +package rag import ( - "gf-lt/models" - "gf-lt/storage" "encoding/binary" "fmt" + "gf-lt/models" + "gf-lt/storage" "log/slog" "sort" "strings" @@ -23,7 +23,7 @@ type VectorStorage struct { func NewVectorStorage(logger *slog.Logger, store storage.FullRepo) *VectorStorage { return &VectorStorage{ logger: logger, - sqlxDB: store.DB(), // Use the new DB() method + sqlxDB: store.DB(), // Use the new DB() method store: store, } } @@ -53,7 +53,7 @@ func (vs *VectorStorage) CreateTables() error { `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_filename ON embeddings_5120(filename)`, `CREATE INDEX IF NOT EXISTS idx_embeddings_384_slug ON embeddings_384(slug)`, `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_slug ON embeddings_5120(slug)`, - + // Additional indexes that may help with searches `CREATE INDEX IF NOT EXISTS idx_embeddings_384_created_at ON embeddings_384(created_at)`, `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_created_at ON embeddings_5120(created_at)`, @@ -140,7 +140,7 @@ func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, err // For better performance, instead of loading all vectors at once, // we'll implement batching and potentially add L2 distance-based pre-filtering // since cosine similarity is related to L2 distance for normalized vectors - + querySQL := fmt.Sprintf("SELECT embeddings, slug, raw_text, filename FROM %s", tableName) rows, err := vs.sqlxDB.Query(querySQL) if err != nil { @@ -153,27 +153,27 @@ func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, err vector models.VectorRow distance float32 } - + var topResults []SearchResult - + // Process vectors one by one to avoid loading everything into memory for rows.Next() { var ( - embeddingsBlob []byte + embeddingsBlob []byte slug, rawText, fileName string ) - + if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil { vs.logger.Error("failed to scan row", "error", err) continue } - + storedEmbeddings := DeserializeVector(embeddingsBlob) - + // Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar) similarity := cosineSimilarity(query, storedEmbeddings) distance := 1 - similarity // Convert to distance where 0 is most similar - + result := SearchResult{ vector: models.VectorRow{ Embeddings: storedEmbeddings, @@ -183,34 +183,34 @@ func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, err }, distance: distance, } - + // Add to top results and maintain only top 3 topResults = append(topResults, result) - + // Sort and keep only top 3 sort.Slice(topResults, func(i, j int) bool { return topResults[i].distance < topResults[j].distance }) - + if len(topResults) > 3 { topResults = topResults[:3] // Keep only closest 3 } } - + // Convert back to VectorRow slice var results []models.VectorRow for _, result := range topResults { result.vector.Distance = result.distance results = append(results, result.vector) } - + return results, nil } // ListFiles returns a list of all loaded files func (vs *VectorStorage) ListFiles() ([]string, error) { var fileLists [][]string - + // Query both tables and combine results for _, table := range []string{"embeddings_384", "embeddings_5120"} { query := fmt.Sprintf("SELECT DISTINCT filename FROM %s", table) @@ -219,7 +219,7 @@ func (vs *VectorStorage) ListFiles() ([]string, error) { // Continue if one table doesn't exist continue } - + var files []string for rows.Next() { var filename string @@ -229,10 +229,10 @@ func (vs *VectorStorage) ListFiles() ([]string, error) { files = append(files, filename) } rows.Close() - + fileLists = append(fileLists, files) } - + // Combine and deduplicate fileSet := make(map[string]bool) var allFiles []string @@ -244,25 +244,25 @@ func (vs *VectorStorage) ListFiles() ([]string, error) { } } } - + return allFiles, nil } // RemoveEmbByFileName removes all embeddings associated with a specific filename func (vs *VectorStorage) RemoveEmbByFileName(filename string) error { var errors []string - + for _, table := range []string{"embeddings_384", "embeddings_5120"} { query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table) if _, err := vs.sqlxDB.Exec(query, filename); err != nil { errors = append(errors, err.Error()) } } - + if len(errors) > 0 { return fmt.Errorf("errors occurred: %s", strings.Join(errors, "; ")) } - + return nil } @@ -297,4 +297,5 @@ func sqrt(f float32) float32 { guess = (guess + f/guess) / 2 } return guess -}
\ No newline at end of file +} + diff --git a/storage/migrate.go b/storage/migrate.go index b05dddc..decfe9c 100644 --- a/storage/migrate.go +++ b/storage/migrate.go @@ -5,8 +5,6 @@ import ( "fmt" "io/fs" "strings" - - _ "github.com/asg017/sqlite-vec-go-bindings/ncruces" ) //go:embed migrations/* @@ -53,8 +51,8 @@ func (p *ProviderSQL) executeMigration(migrationsDir fs.FS, fileName string) err } func (p *ProviderSQL) executeSQL(sqlContent []byte) error { - // Connect to the database (example using a simple connection) - err := p.s3Conn.Exec(string(sqlContent)) + // Execute the migration content using standard database connection + _, err := p.db.Exec(string(sqlContent)) if err != nil { return fmt.Errorf("failed to execute SQL: %w", err) } diff --git a/storage/storage.go b/storage/storage.go index 0416884..a092f8d 100644 --- a/storage/storage.go +++ b/storage/storage.go @@ -6,7 +6,6 @@ import ( _ "github.com/glebarez/go-sqlite" "github.com/jmoiron/sqlx" - "github.com/ncruces/go-sqlite3" ) type FullRepo interface { @@ -28,7 +27,6 @@ type ChatHistory interface { type ProviderSQL struct { db *sqlx.DB - s3Conn *sqlite3.Conn logger *slog.Logger } @@ -97,7 +95,7 @@ func (p ProviderSQL) ChatGetMaxID() (uint32, error) { return id, err } -// opens two connections +// opens database connection func NewProviderSQL(dbPath string, logger *slog.Logger) FullRepo { db, err := sqlx.Open("sqlite", dbPath) if err != nil { @@ -105,11 +103,7 @@ func NewProviderSQL(dbPath string, logger *slog.Logger) FullRepo { return nil } p := ProviderSQL{db: db, logger: logger} - p.s3Conn, err = sqlite3.Open(dbPath) - if err != nil { - logger.Error("failed to open vecdb connection", "error", err) - return nil - } + p.Migrate() return p } diff --git a/storage/vector.go b/storage/vector.go index b3e5654..6958634 100644 --- a/storage/vector.go +++ b/storage/vector.go @@ -66,35 +66,13 @@ func (p ProviderSQL) WriteVector(row *models.VectorRow) error { if err != nil { return err } - stmt, _, err := p.s3Conn.Prepare( - fmt.Sprintf("INSERT INTO %s(embedding, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName)) - if err != nil { - p.logger.Error("failed to prep a stmt", "error", err) - return err - } - defer stmt.Close() + serializedEmbeddings := SerializeVector(row.Embeddings) - if err := stmt.BindBlob(1, serializedEmbeddings); err != nil { - p.logger.Error("failed to bind", "error", err) - return err - } - if err := stmt.BindText(2, row.Slug); err != nil { - p.logger.Error("failed to bind", "error", err) - return err - } - if err := stmt.BindText(3, row.RawText); err != nil { - p.logger.Error("failed to bind", "error", err) - return err - } - if err := stmt.BindText(4, row.FileName); err != nil { - p.logger.Error("failed to bind", "error", err) - return err - } - err = stmt.Exec() - if err != nil { - return err - } - return nil + + query := fmt.Sprintf("INSERT INTO %s(embedding, slug, raw_text, filename) VALUES (?, ?, ?, ?)", tableName) + _, err = p.db.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName) + + return err } func decodeUnsafe(bs []byte) []float32 { @@ -110,30 +88,30 @@ func (p ProviderSQL) SearchClosest(q []float32) ([]models.VectorRow, error) { func (p ProviderSQL) ListFiles() ([]string, error) { q := fmt.Sprintf("SELECT filename FROM %s GROUP BY filename", vecTableName384) - stmt, _, err := p.s3Conn.Prepare(q) + rows, err := p.db.Query(q) if err != nil { return nil, err } - defer stmt.Close() + defer rows.Close() + resp := []string{} - for stmt.Step() { - resp = append(resp, stmt.ColumnText(0)) + for rows.Next() { + var filename string + if err := rows.Scan(&filename); err != nil { + return nil, err + } + resp = append(resp, filename) } - if err := stmt.Err(); err != nil { + + if err := rows.Err(); err != nil { return nil, err } + return resp, nil } func (p ProviderSQL) RemoveEmbByFileName(filename string) error { q := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", vecTableName384) - stmt, _, err := p.s3Conn.Prepare(q) - if err != nil { - return err - } - defer stmt.Close() - if err := stmt.BindText(1, filename); err != nil { - return err - } - return stmt.Exec() + _, err := p.db.Exec(q, filename) + return err } |