diff options
Diffstat (limited to 'rag_new/storage.go')
-rw-r--r-- | rag_new/storage.go | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/rag_new/storage.go b/rag_new/storage.go new file mode 100644 index 0000000..2ab56fb --- /dev/null +++ b/rag_new/storage.go @@ -0,0 +1,300 @@ +package rag_new + +import ( + "gf-lt/models" + "gf-lt/storage" + "encoding/binary" + "fmt" + "log/slog" + "sort" + "strings" + "unsafe" + + "github.com/jmoiron/sqlx" +) + +// VectorStorage handles storing and retrieving vectors from SQLite +type VectorStorage struct { + logger *slog.Logger + sqlxDB *sqlx.DB + store storage.FullRepo +} + +func NewVectorStorage(logger *slog.Logger, store storage.FullRepo) *VectorStorage { + return &VectorStorage{ + logger: logger, + sqlxDB: store.DB(), // Use the new DB() method + store: store, + } +} + +// CreateTables creates the necessary tables for vector storage +func (vs *VectorStorage) CreateTables() error { + // Create tables for different embedding dimensions + queries := []string{ + `CREATE TABLE IF NOT EXISTS embeddings_384 ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + embeddings BLOB NOT NULL, + slug TEXT NOT NULL, + raw_text TEXT NOT NULL, + filename TEXT NOT NULL, + created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP + )`, + `CREATE TABLE IF NOT EXISTS embeddings_5120 ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + embeddings BLOB NOT NULL, + slug TEXT NOT NULL, + raw_text TEXT NOT NULL, + filename TEXT NOT NULL, + created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP + )`, + // Indexes for better performance + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_filename ON embeddings_384(filename)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_filename ON embeddings_5120(filename)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_slug ON embeddings_384(slug)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_slug ON embeddings_5120(slug)`, + + // Additional indexes that may help with searches + `CREATE INDEX IF NOT EXISTS idx_embeddings_384_created_at ON embeddings_384(created_at)`, + `CREATE INDEX IF NOT EXISTS idx_embeddings_5120_created_at ON embeddings_5120(created_at)`, + } + + for _, query := range queries { + if _, err := vs.sqlxDB.Exec(query); err != nil { + return fmt.Errorf("failed to create table: %w", err) + } + } + return nil +} + +// SerializeVector converts []float32 to binary blob +func SerializeVector(vec []float32) []byte { + buf := make([]byte, len(vec)*4) // 4 bytes per float32 + for i, v := range vec { + binary.LittleEndian.PutUint32(buf[i*4:], mathFloat32bits(v)) + } + return buf +} + +// DeserializeVector converts binary blob back to []float32 +func DeserializeVector(data []byte) []float32 { + count := len(data) / 4 + vec := make([]float32, count) + for i := 0; i < count; i++ { + vec[i] = mathBitsToFloat32(binary.LittleEndian.Uint32(data[i*4:])) + } + return vec +} + +// mathFloat32bits and mathBitsToFloat32 are helpers to convert between float32 and uint32 +func mathFloat32bits(f float32) uint32 { + return binary.LittleEndian.Uint32((*(*[4]byte)(unsafe.Pointer(&f)))[:4]) +} + +func mathBitsToFloat32(b uint32) float32 { + return *(*float32)(unsafe.Pointer(&b)) +} + +// WriteVector stores an embedding vector in the database +func (vs *VectorStorage) WriteVector(row *models.VectorRow) error { + tableName, err := vs.getTableName(row.Embeddings) + if err != nil { + return err + } + + // Serialize the embeddings to binary + serializedEmbeddings := SerializeVector(row.Embeddings) + + query := fmt.Sprintf( + "INSERT INTO %s (embeddings, slug, raw_text, filename) VALUES (?, ?, ?, ?)", + tableName, + ) + + if _, err := vs.sqlxDB.Exec(query, serializedEmbeddings, row.Slug, row.RawText, row.FileName); err != nil { + vs.logger.Error("failed to write vector", "error", err, "slug", row.Slug) + return err + } + + return nil +} + +// getTableName determines which table to use based on embedding size +func (vs *VectorStorage) getTableName(emb []float32) (string, error) { + switch len(emb) { + case 384: + return "embeddings_384", nil + case 5120: + return "embeddings_5120", nil + default: + return "", fmt.Errorf("no table for embedding size of %d", len(emb)) + } +} + +// SearchClosest finds vectors closest to the query vector using efficient cosine similarity calculation +func (vs *VectorStorage) SearchClosest(query []float32) ([]models.VectorRow, error) { + tableName, err := vs.getTableName(query) + if err != nil { + return nil, err + } + + // For better performance, instead of loading all vectors at once, + // we'll implement batching and potentially add L2 distance-based pre-filtering + // since cosine similarity is related to L2 distance for normalized vectors + + querySQL := fmt.Sprintf("SELECT embeddings, slug, raw_text, filename FROM %s", tableName) + rows, err := vs.sqlxDB.Query(querySQL) + if err != nil { + return nil, err + } + defer rows.Close() + + // Use a min-heap or simple slice to keep track of top 3 closest vectors + type SearchResult struct { + vector models.VectorRow + distance float32 + } + + var topResults []SearchResult + + // Process vectors one by one to avoid loading everything into memory + for rows.Next() { + var ( + embeddingsBlob []byte + slug, rawText, fileName string + ) + + if err := rows.Scan(&embeddingsBlob, &slug, &rawText, &fileName); err != nil { + vs.logger.Error("failed to scan row", "error", err) + continue + } + + storedEmbeddings := DeserializeVector(embeddingsBlob) + + // Calculate cosine similarity (returns value between -1 and 1, where 1 is most similar) + similarity := cosineSimilarity(query, storedEmbeddings) + distance := 1 - similarity // Convert to distance where 0 is most similar + + result := SearchResult{ + vector: models.VectorRow{ + Embeddings: storedEmbeddings, + Slug: slug, + RawText: rawText, + FileName: fileName, + }, + distance: distance, + } + + // Add to top results and maintain only top 3 + topResults = append(topResults, result) + + // Sort and keep only top 3 + sort.Slice(topResults, func(i, j int) bool { + return topResults[i].distance < topResults[j].distance + }) + + if len(topResults) > 3 { + topResults = topResults[:3] // Keep only closest 3 + } + } + + // Convert back to VectorRow slice + var results []models.VectorRow + for _, result := range topResults { + result.vector.Distance = result.distance + results = append(results, result.vector) + } + + return results, nil +} + +// ListFiles returns a list of all loaded files +func (vs *VectorStorage) ListFiles() ([]string, error) { + var fileLists [][]string + + // Query both tables and combine results + for _, table := range []string{"embeddings_384", "embeddings_5120"} { + query := fmt.Sprintf("SELECT DISTINCT filename FROM %s", table) + rows, err := vs.sqlxDB.Query(query) + if err != nil { + // Continue if one table doesn't exist + continue + } + + var files []string + for rows.Next() { + var filename string + if err := rows.Scan(&filename); err != nil { + continue + } + files = append(files, filename) + } + rows.Close() + + fileLists = append(fileLists, files) + } + + // Combine and deduplicate + fileSet := make(map[string]bool) + var allFiles []string + for _, files := range fileLists { + for _, file := range files { + if !fileSet[file] { + fileSet[file] = true + allFiles = append(allFiles, file) + } + } + } + + return allFiles, nil +} + +// RemoveEmbByFileName removes all embeddings associated with a specific filename +func (vs *VectorStorage) RemoveEmbByFileName(filename string) error { + var errors []string + + for _, table := range []string{"embeddings_384", "embeddings_5120"} { + query := fmt.Sprintf("DELETE FROM %s WHERE filename = ?", table) + if _, err := vs.sqlxDB.Exec(query, filename); err != nil { + errors = append(errors, err.Error()) + } + } + + if len(errors) > 0 { + return fmt.Errorf("errors occurred: %s", strings.Join(errors, "; ")) + } + + return nil +} + +// cosineSimilarity calculates the cosine similarity between two vectors +func cosineSimilarity(a, b []float32) float32 { + if len(a) != len(b) { + return 0.0 + } + + var dotProduct, normA, normB float32 + for i := 0; i < len(a); i++ { + dotProduct += a[i] * b[i] + normA += a[i] * a[i] + normB += b[i] * b[i] + } + + if normA == 0 || normB == 0 { + return 0.0 + } + + return dotProduct / (sqrt(normA) * sqrt(normB)) +} + +// sqrt returns the square root of a float32 +func sqrt(f float32) float32 { + // A simple implementation of square root using Newton's method + if f == 0 { + return 0 + } + guess := f / 2 + for i := 0; i < 10; i++ { // 10 iterations should be enough for good precision + guess = (guess + f/guess) / 2 + } + return guess +}
\ No newline at end of file |