summaryrefslogtreecommitdiff
path: root/rag/rag.go
diff options
context:
space:
mode:
Diffstat (limited to 'rag/rag.go')
-rw-r--r--rag/rag.go261
1 files changed, 261 insertions, 0 deletions
diff --git a/rag/rag.go b/rag/rag.go
new file mode 100644
index 0000000..c05d38a
--- /dev/null
+++ b/rag/rag.go
@@ -0,0 +1,261 @@
+package rag
+
+import (
+ "fmt"
+ "gf-lt/config"
+ "gf-lt/models"
+ "gf-lt/storage"
+ "log/slog"
+ "os"
+ "path"
+ "strings"
+ "sync"
+
+ "github.com/neurosnap/sentences/english"
+)
+
+var (
+ // Status messages for TUI integration
+ LongJobStatusCh = make(chan string, 10) // Increased buffer size to prevent blocking
+ FinishedRAGStatus = "finished loading RAG file; press Enter"
+ LoadedFileRAGStatus = "loaded file"
+ ErrRAGStatus = "some error occurred; failed to transfer data to vector db"
+)
+
+type RAG struct {
+ logger *slog.Logger
+ store storage.FullRepo
+ cfg *config.Config
+ embedder Embedder
+ storage *VectorStorage
+}
+
+func New(l *slog.Logger, s storage.FullRepo, cfg *config.Config) *RAG {
+ // Initialize with API embedder by default, could be configurable later
+ embedder := NewAPIEmbedder(l, cfg)
+
+ rag := &RAG{
+ logger: l,
+ store: s,
+ cfg: cfg,
+ embedder: embedder,
+ storage: NewVectorStorage(l, s),
+ }
+
+ // Create the necessary tables
+ if err := rag.storage.CreateTables(); err != nil {
+ l.Error("failed to create vector tables", "error", err)
+ }
+
+ return rag
+}
+
+func wordCounter(sentence string) int {
+ return len(strings.Split(strings.TrimSpace(sentence), " "))
+}
+
+func (r *RAG) LoadRAG(fpath string) error {
+ data, err := os.ReadFile(fpath)
+ if err != nil {
+ return err
+ }
+ r.logger.Debug("rag: loaded file", "fp", fpath)
+ LongJobStatusCh <- LoadedFileRAGStatus
+
+ fileText := string(data)
+ tokenizer, err := english.NewSentenceTokenizer(nil)
+ if err != nil {
+ return err
+ }
+ sentences := tokenizer.Tokenize(fileText)
+ sents := make([]string, len(sentences))
+ for i, s := range sentences {
+ sents[i] = s.Text
+ }
+
+ // Group sentences into paragraphs based on word limit
+ paragraphs := []string{}
+ par := strings.Builder{}
+ for i := 0; i < len(sents); i++ {
+ // Only add sentences that aren't empty
+ if strings.TrimSpace(sents[i]) != "" {
+ if par.Len() > 0 {
+ par.WriteString(" ") // Add space between sentences
+ }
+ par.WriteString(sents[i])
+ }
+
+ if wordCounter(par.String()) > int(r.cfg.RAGWordLimit) {
+ paragraph := strings.TrimSpace(par.String())
+ if paragraph != "" {
+ paragraphs = append(paragraphs, paragraph)
+ }
+ par.Reset()
+ }
+ }
+
+ // Handle any remaining content in the paragraph buffer
+ if par.Len() > 0 {
+ paragraph := strings.TrimSpace(par.String())
+ if paragraph != "" {
+ paragraphs = append(paragraphs, paragraph)
+ }
+ }
+
+ // Adjust batch size if needed
+ if len(paragraphs) < int(r.cfg.RAGBatchSize) && len(paragraphs) > 0 {
+ r.cfg.RAGBatchSize = len(paragraphs)
+ }
+
+ if len(paragraphs) == 0 {
+ return fmt.Errorf("no valid paragraphs found in file")
+ }
+
+ var (
+ maxChSize = 100
+ left = 0
+ right = r.cfg.RAGBatchSize
+ batchCh = make(chan map[int][]string, maxChSize)
+ vectorCh = make(chan []models.VectorRow, maxChSize)
+ errCh = make(chan error, 1)
+ doneCh = make(chan bool, 1)
+ lock = new(sync.Mutex)
+ )
+
+ defer close(doneCh)
+ defer close(errCh)
+ defer close(batchCh)
+
+ // Fill input channel with batches
+ ctn := 0
+ totalParagraphs := len(paragraphs)
+ for {
+ if int(right) > totalParagraphs {
+ batchCh <- map[int][]string{left: paragraphs[left:]}
+ break
+ }
+ batchCh <- map[int][]string{left: paragraphs[left:right]}
+ left, right = right, right+r.cfg.RAGBatchSize
+ ctn++
+ }
+
+ finishedBatchesMsg := fmt.Sprintf("finished batching batches#: %d; paragraphs: %d; sentences: %d\n", ctn+1, len(paragraphs), len(sents))
+ r.logger.Debug(finishedBatchesMsg)
+ LongJobStatusCh <- finishedBatchesMsg
+
+ // Start worker goroutines
+ for w := 0; w < int(r.cfg.RAGWorkers); w++ {
+ go r.batchToVectorAsync(lock, w, batchCh, vectorCh, errCh, doneCh, path.Base(fpath))
+ }
+
+ // Wait for embedding to be done
+ <-doneCh
+
+ // Write vectors to storage
+ return r.writeVectors(vectorCh)
+}
+
+func (r *RAG) writeVectors(vectorCh chan []models.VectorRow) error {
+ for {
+ for batch := range vectorCh {
+ for _, vector := range batch {
+ if err := r.storage.WriteVector(&vector); err != nil {
+ r.logger.Error("failed to write vector", "error", err, "slug", vector.Slug)
+ LongJobStatusCh <- ErrRAGStatus
+ continue // a duplicate is not critical
+ }
+ }
+ r.logger.Debug("wrote batch to db", "size", len(batch), "vector_chan_len", len(vectorCh))
+ if len(vectorCh) == 0 {
+ r.logger.Debug("finished writing vectors")
+ LongJobStatusCh <- FinishedRAGStatus
+ return nil
+ }
+ }
+ }
+}
+
+func (r *RAG) batchToVectorAsync(lock *sync.Mutex, id int, inputCh <-chan map[int][]string,
+ vectorCh chan<- []models.VectorRow, errCh chan error, doneCh chan bool, filename string) {
+ defer func() {
+ if len(doneCh) == 0 {
+ doneCh <- true
+ }
+ }()
+
+ for {
+ lock.Lock()
+ if len(inputCh) == 0 {
+ lock.Unlock()
+ return
+ }
+
+ select {
+ case linesMap := <-inputCh:
+ for leftI, lines := range linesMap {
+ if err := r.fetchEmb(lines, errCh, vectorCh, fmt.Sprintf("%s_%d", filename, leftI), filename); err != nil {
+ r.logger.Error("error fetching embeddings", "error", err, "worker", id)
+ lock.Unlock()
+ return
+ }
+ }
+ lock.Unlock()
+ case err := <-errCh:
+ r.logger.Error("got an error from error channel", "error", err)
+ lock.Unlock()
+ return
+ default:
+ lock.Unlock()
+ }
+
+ r.logger.Debug("processed batch", "batches#", len(inputCh), "worker#", id)
+ LongJobStatusCh <- fmt.Sprintf("converted to vector; batches: %d, worker#: %d", len(inputCh), id)
+ }
+}
+
+func (r *RAG) fetchEmb(lines []string, errCh chan error, vectorCh chan<- []models.VectorRow, slug, filename string) error {
+ embeddings, err := r.embedder.Embed(lines)
+ if err != nil {
+ r.logger.Error("failed to embed lines", "err", err.Error())
+ errCh <- err
+ return err
+ }
+
+ if len(embeddings) == 0 {
+ err := fmt.Errorf("no embeddings returned")
+ r.logger.Error("empty embeddings")
+ errCh <- err
+ return err
+ }
+
+ vectors := make([]models.VectorRow, len(embeddings))
+ for i, emb := range embeddings {
+ vector := models.VectorRow{
+ Embeddings: emb,
+ RawText: lines[i],
+ Slug: fmt.Sprintf("%s_%d", slug, i),
+ FileName: filename,
+ }
+ vectors[i] = vector
+ }
+
+ vectorCh <- vectors
+ return nil
+}
+
+func (r *RAG) LineToVector(line string) ([]float32, error) {
+ return r.embedder.EmbedSingle(line)
+}
+
+func (r *RAG) SearchEmb(emb *models.EmbeddingResp) ([]models.VectorRow, error) {
+ return r.storage.SearchClosest(emb.Embedding)
+}
+
+func (r *RAG) ListLoaded() ([]string, error) {
+ return r.storage.ListFiles()
+}
+
+func (r *RAG) RemoveFile(filename string) error {
+ return r.storage.RemoveEmbByFileName(filename)
+}
+